Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1676
Question Number 40128 Answers: 0 Comments: 1
$${calculate}\:\:\:\int_{−\mathrm{2}} ^{−\mathrm{1}} \:\:\:\:\:\frac{{dt}}{{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\:. \\ $$
Question Number 40127 Answers: 1 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{e}^{{x}} −\mathrm{1}}{{e}^{{x}} \:+\mathrm{1}}{dx} \\ $$
Question Number 40126 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{tdt}}{\mathrm{1}+{t}^{\mathrm{4}} } \\ $$
Question Number 40125 Answers: 0 Comments: 0
$${let}\:{z}_{\mathrm{0}} =\mathrm{0}\:\:{and}\:\:\forall{n}\:\in{N}\:\:\:{z}_{{n}+\mathrm{1}} =\frac{{i}}{\mathrm{2}}{z}_{{n}} \:+\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:\:{find}\:\:{z}_{{n}} {at}\:{form}\:{of}\:{sum} \\ $$$$\left.\mathrm{2}\right){let}\:{W}_{{n}} \:\:={z}_{{n}} \:\:\:\:−\frac{\mathrm{1}+{i}}{\mathrm{2}}\:\:\:{find}\:{lim}\:\mid{W}_{{n}} \mid\left({n}\rightarrow+\infty\right) \\ $$
Question Number 40124 Answers: 0 Comments: 0
$${let}\:{u}_{\mathrm{0}} \geqslant\mathrm{4}\:\:{and}\:\:{u}_{{n}+\mathrm{1}} =\mathrm{2}{u}_{{n}} −\mathrm{3} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{u}_{{n}} \:{interms}\:{of}\:{u}_{\mathrm{0}} \:{and}\:{n} \\ $$$$\left.\mathrm{2}\right){study}\:{the}\:{convergence}\:{of}\:\left({u}^{{n}} \right) \\ $$
Question Number 40123 Answers: 1 Comments: 0
$${study}\:{the}\:{convergence}\:{of} \\ $$$${v}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} }{\mathrm{2}^{{k}} \:+{ln}\left({k}\right)} \\ $$
Question Number 40122 Answers: 0 Comments: 0
$${let}\:{u}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\left(\mathrm{2}{k}\right)!} \\ $$$${prove}\:{that}\:\left({u}_{{n}} \right)\:{converges} \\ $$
Question Number 40121 Answers: 0 Comments: 0
$${find}\:{assymptotes}\:{of}\:{f}\left({x}\right)=\sqrt{{x}^{\mathrm{4}} \:−{x}^{\mathrm{2}} \:+{x}−\mathrm{1}}\:−\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$
Question Number 40120 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{\left(\mathrm{1}+{sinx}\right)^{\frac{\mathrm{1}}{{x}}} \:−{e}^{\mathrm{1}−\frac{{x}}{\mathrm{2}}} }{\left(\mathrm{1}+{tanx}\right)^{\frac{\mathrm{1}}{{x}}} \:−{e}^{\mathrm{1}−\frac{{x}}{\mathrm{2}}} } \\ $$
Question Number 40119 Answers: 0 Comments: 0
$${find}\:{lim}_{{x}\rightarrow+\infty} \:\left({chx}\right)^{{sh}\left({x}\right)} \:\:−\left({shx}\right)^{{ch}\left({x}\right)} \\ $$
Question Number 40118 Answers: 0 Comments: 1
$${calculate}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\:\frac{\mathrm{2}{x}}{{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right)}\:−{cosx} \\ $$
Question Number 40117 Answers: 0 Comments: 0
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{\mathrm{1}}{{sin}^{\mathrm{4}} {x}}\left\{\:{sin}\left(\frac{{x}}{\mathrm{1}−{x}}\right)−\frac{{sinx}}{\mathrm{1}−{sinx}}\right\} \\ $$
Question Number 40116 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)\:=\:\frac{{e}^{{x}^{\mathrm{2}} } −\mathrm{1}}{{x}}\:\:{if}\:{x}\neq\mathrm{0}\:\:{and}\:{f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${prove}\:{that}\:\:{f}^{−\mathrm{1}} \left({x}\right)={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{2}}\:+{o}\left({x}^{\mathrm{3}} \right)\:\:\:\left({x}\rightarrow\mathrm{0}\right) \\ $$
Question Number 40115 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)=\:\frac{{e}^{{x}} −\mathrm{1}}{{x}}\:\:{if}\:{x}\neq\mathrm{0}\:\:{and}\:{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${give}\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}\:{at}\:{form}\:{of}\:{serie}. \\ $$
Question Number 40114 Answers: 0 Comments: 1
$${let}\:{g}\left({x}\right)=\:{cos}\left({x}+\mathrm{1}\right) \\ $$$${developp}\:{g}\:{at}\:{integr}\:{serie} \\ $$
Question Number 40113 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)={ln}\left(\mathrm{2}+{x}\right) \\ $$$$\left.\mathrm{1}\right)\:{give}\:{D}_{{n}} \left(\mathrm{0}\right)\:{of}\:{f} \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$
Question Number 40112 Answers: 0 Comments: 0
$${calculate}\:\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:\:\left\{\:{tan}\left(\frac{\pi}{\mathrm{2}+{x}}\right)\right\}^{{x}} \\ $$
Question Number 40111 Answers: 0 Comments: 0
$${find}\:\:{lim}\:_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{a}^{{x}} \:−{b}^{{x}} }{{e}^{{ax}} \:−{e}^{{bx}} }\:\:\:{with}\:{a}>\mathrm{0}\:\:\:\:{b}>\mathrm{0}\:\:{and}\:{a}\neq{b} \\ $$
Question Number 40110 Answers: 0 Comments: 0
$${find}\:\:{lim}_{{x}\rightarrow+\infty} {x}\left\{\left(\mathrm{1}+{a}\right)^{\frac{\mathrm{1}}{{x}}} \:−{a}^{\frac{\mathrm{1}}{{x}}} \right\}\:\:\:\:\:\left({a}>\mathrm{0}\right) \\ $$
Question Number 40109 Answers: 0 Comments: 0
Question Number 40108 Answers: 0 Comments: 0
$${calculate}\:\:{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\left({sinx}\right)^{{ln}\mid{x}−\frac{\pi}{\mathrm{2}}\mid} \\ $$
Question Number 40107 Answers: 1 Comments: 0
$${prove}\:{the}\:{relations} \\ $$$$\left.\mathrm{1}\left.\right)\left.\:\forall{t}\:\in\right]\mathrm{0},\mathrm{1}\right]\:\:\:{arctan}\left(\frac{\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{{t}}\right)={arccost} \\ $$$$\left.\mathrm{2}\right)\:\forall\:{t}\in\left[−\mathrm{1},\mathrm{1}\right]\:\:\:\:\mathrm{2}\:{arccos}\sqrt{\frac{\mathrm{1}+{t}}{\mathrm{2}}}\:={arccost} \\ $$
Question Number 40106 Answers: 1 Comments: 0
$${study}\:{and}\:{give}\:{the}\:{graph}\:{for}\:{the}\:{function} \\ $$$${f}\left({x}\right)=\:\frac{{x}}{{x}−\mathrm{1}}\:{e}^{\frac{\mathrm{1}}{{x}}} \\ $$
Question Number 40105 Answers: 0 Comments: 1
$${let}\:\:{f}\left({x}\right)\:=\:{x}^{{n}} \:{e}^{−\mathrm{2}{nx}} \:\:\:\:{with}\:{n}\:{integr}\:{natural} \\ $$$$\:{calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right). \\ $$
Question Number 40104 Answers: 0 Comments: 0
$${find}\:{number}\:{of}\:{solution}\:{for}\:{the}\:{equation} \\ $$$$\frac{{e}^{{x}} }{\mathrm{2}\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:=\mathrm{1}\:. \\ $$
Question Number 40103 Answers: 0 Comments: 0
$${let}\:{g}\left({x}\right)=\sqrt{−{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{g}\:{is}\:{solution}\:{for}\:{the}\:{differencial}\:{equation} \\ $$$$\mathrm{4}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}^{''} \:+\mathrm{4}{xy}^{'} \:−{y}\:=\mathrm{0}\:\:\:.{prove}\:{that}\:{g}\:{is}\:{C}^{\infty} {on}\:{R} \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{a}\:{relation}\:{between}\:{g}^{\left({n}\right)} \left(\mathrm{0}\right)\:{and}\:{g}^{\left({n}+\mathrm{2}\right)} \left(\mathrm{0}\right) \\ $$
Pg 1671 Pg 1672 Pg 1673 Pg 1674 Pg 1675 Pg 1676 Pg 1677 Pg 1678 Pg 1679 Pg 1680
Terms of Service
Privacy Policy
Contact: info@tinkutara.com