Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1676

Question Number 40108    Answers: 0   Comments: 0

calculate lim_(x→(π/2)) (sinx)^(ln∣x−(π/2)∣)

$${calculate}\:\:{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\left({sinx}\right)^{{ln}\mid{x}−\frac{\pi}{\mathrm{2}}\mid} \\ $$

Question Number 40107    Answers: 1   Comments: 0

prove the relations 1) ∀t ∈]0,1] arctan(((√(1−t^2 ))/t))=arccost 2) ∀ t∈[−1,1] 2 arccos(√((1+t)/2)) =arccost

$${prove}\:{the}\:{relations} \\ $$$$\left.\mathrm{1}\left.\right)\left.\:\forall{t}\:\in\right]\mathrm{0},\mathrm{1}\right]\:\:\:{arctan}\left(\frac{\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{{t}}\right)={arccost} \\ $$$$\left.\mathrm{2}\right)\:\forall\:{t}\in\left[−\mathrm{1},\mathrm{1}\right]\:\:\:\:\mathrm{2}\:{arccos}\sqrt{\frac{\mathrm{1}+{t}}{\mathrm{2}}}\:={arccost} \\ $$

Question Number 40106    Answers: 1   Comments: 0

study and give the graph for the function f(x)= (x/(x−1)) e^(1/x)

$${study}\:{and}\:{give}\:{the}\:{graph}\:{for}\:{the}\:{function} \\ $$$${f}\left({x}\right)=\:\frac{{x}}{{x}−\mathrm{1}}\:{e}^{\frac{\mathrm{1}}{{x}}} \\ $$

Question Number 40105    Answers: 0   Comments: 1

let f(x) = x^n e^(−2nx) with n integr natural calculate f^((n)) (0).

$${let}\:\:{f}\left({x}\right)\:=\:{x}^{{n}} \:{e}^{−\mathrm{2}{nx}} \:\:\:\:{with}\:{n}\:{integr}\:{natural} \\ $$$$\:{calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right). \\ $$

Question Number 40104    Answers: 0   Comments: 0

find number of solution for the equation (e^x /(2(x+1)^2 )) =1 .

$${find}\:{number}\:{of}\:{solution}\:{for}\:{the}\:{equation} \\ $$$$\frac{{e}^{{x}} }{\mathrm{2}\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:=\mathrm{1}\:. \\ $$

Question Number 40103    Answers: 0   Comments: 0

let g(x)=(√(−x+(√(1+x^2 )))) 1) prove that g is solution for the differencial equation 4(1+x^2 )y^(′′) +4xy^′ −y =0 .prove that g is C^∞ on R 2) determine a relation between g^((n)) (0) and g^((n+2)) (0)

$${let}\:{g}\left({x}\right)=\sqrt{−{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{g}\:{is}\:{solution}\:{for}\:{the}\:{differencial}\:{equation} \\ $$$$\mathrm{4}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}^{''} \:+\mathrm{4}{xy}^{'} \:−{y}\:=\mathrm{0}\:\:\:.{prove}\:{that}\:{g}\:{is}\:{C}^{\infty} {on}\:{R} \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{a}\:{relation}\:{between}\:{g}^{\left({n}\right)} \left(\mathrm{0}\right)\:{and}\:{g}^{\left({n}+\mathrm{2}\right)} \left(\mathrm{0}\right) \\ $$

Question Number 40102    Answers: 2   Comments: 0

let f(x) = ((∣x∣)/((1+∣1−x^2 ∣)^n )) study tbe derivability of f at points 0 and 1 (n natural integr)

$${let}\:{f}\left({x}\right)\:=\:\frac{\mid{x}\mid}{\left(\mathrm{1}+\mid\mathrm{1}−{x}^{\mathrm{2}} \mid\right)^{{n}} } \\ $$$${study}\:{tbe}\:{derivability}\:{of}\:{f}\:{at}\:{points}\:\mathrm{0}\:{and}\:\mathrm{1}\:\left({n}\:{natural}\:{integr}\right) \\ $$

Question Number 40101    Answers: 0   Comments: 0

study the variation of f(x)=arcsin(2x(√(1−x^2 )) ) and give its graph

$${study}\:\:{the}\:{variation}\:{of}\:{f}\left({x}\right)={arcsin}\left(\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\right)\:{and}\:{give}\:{its}\:{graph} \\ $$

Question Number 40100    Answers: 0   Comments: 1

solve arctan(2x) +arctan(3x)=(π/4)

$${solve}\:\:\:{arctan}\left(\mathrm{2}{x}\right)\:+{arctan}\left(\mathrm{3}{x}\right)=\frac{\pi}{\mathrm{4}} \\ $$

Question Number 40099    Answers: 0   Comments: 0

solve arcsin(((2x)/(1+x^2 ))) =(π/3)

$${solve}\:\:{arcsin}\left(\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right)\:=\frac{\pi}{\mathrm{3}} \\ $$

Question Number 40098    Answers: 0   Comments: 0

solve arcsin(sinx) =(π/9)

$${solve}\:\:{arcsin}\left({sinx}\right)\:=\frac{\pi}{\mathrm{9}} \\ $$

Question Number 40097    Answers: 0   Comments: 2

let f(x)=ln(√((2+x)/(2−x))) 1) find D_f and find the assymptotes to C_f 2) calculate f^′ (x) and give the variation of f 3) give the graph of f 4) give the equation of tangent to C_(f ) at point E((1/2),f((1/2))) 5) calculate ∫_0 ^1 f(x)dx .

$${let}\:{f}\left({x}\right)={ln}\sqrt{\frac{\mathrm{2}+{x}}{\mathrm{2}−{x}}} \\ $$$$\left.\mathrm{1}\right)\:\:{find}\:{D}_{{f}} \:\:\:\:{and}\:{find}\:{the}\:{assymptotes}\:{to}\:{C}_{{f}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({x}\right)\:{and}\:{give}\:{the}\:{variation}\:{of}\:{f} \\ $$$$\left.\mathrm{3}\right)\:{give}\:{the}\:{graph}\:{of}\:{f} \\ $$$$\left.\mathrm{4}\right)\:{give}\:{the}\:{equation}\:{of}\:{tangent}\:{to}\:{C}_{{f}\:} \:\:\:{at}\:{point}\:\:{E}\left(\frac{\mathrm{1}}{\mathrm{2}},{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$$\left.\mathrm{5}\right)\:{calculate}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}\:. \\ $$

Question Number 40095    Answers: 1   Comments: 0

let f(x) =cos(x)cos((1/x)) is f have a limit at point 0?

$${let}\:{f}\left({x}\right)\:={cos}\left({x}\right){cos}\left(\frac{\mathrm{1}}{{x}}\right)\:\:{is}\:{f}\:\:{have}\:{a}\:{limit}\:{at}\:{point}\:\mathrm{0}? \\ $$$$ \\ $$

Question Number 40094    Answers: 0   Comments: 0

find lim _(x→0^+ ) ln(x)tan{ln(1+x)}

$${find}\:\:{lim}\:_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:\:\:{ln}\left({x}\right){tan}\left\{{ln}\left(\mathrm{1}+{x}\right)\right\} \\ $$

Question Number 40093    Answers: 0   Comments: 0

find lim _(x→0) ((ln(cosx))/(1−cos(2x)))

$${find}\:\:{lim}\:_{{x}\rightarrow\mathrm{0}} \:\:\frac{{ln}\left({cosx}\right)}{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)} \\ $$

Question Number 40092    Answers: 0   Comments: 1

calculate lim_(x→+∞) (1/x) tan(((πx)/(2x+3)))

$${calculate}\:{lim}_{{x}\rightarrow+\infty} \:\:\:\:\:\:\frac{\mathrm{1}}{{x}}\:{tan}\left(\frac{\pi{x}}{\mathrm{2}{x}+\mathrm{3}}\right) \\ $$

Question Number 40091    Answers: 0   Comments: 1

find a equivalent to f(x)=cos(sinx) for x∈v(0) 2) find a equivalent to g(x)= tan((π/(2x+1))) (x→0)

$${find}\:{a}\:{equivalent}\:{to}\:{f}\left({x}\right)={cos}\left({sinx}\right)\:{for}\:{x}\in{v}\left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{equivalent}\:{to}\:{g}\left({x}\right)=\:{tan}\left(\frac{\pi}{\mathrm{2}{x}+\mathrm{1}}\right)\:\left({x}\rightarrow\mathrm{0}\right) \\ $$

Question Number 40090    Answers: 0   Comments: 1

let f(x)= 1−[x]−[1−x] 1) prove that f is periodic with period 1 2) give a expression of f(x) when x∈[0,1[

$${let}\:{f}\left({x}\right)=\:\mathrm{1}−\left[{x}\right]−\left[\mathrm{1}−{x}\right] \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{f}\:{is}\:{periodic}\:{with}\:{period}\:\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{give}\:{a}\:{expression}\:{of}\:{f}\left({x}\right)\:{when}\:\:{x}\in\left[\mathrm{0},\mathrm{1}\left[\right.\right. \\ $$

Question Number 40089    Answers: 0   Comments: 0

find lim _(x→−∞) ((x^4 +1)/(cotan((1/x))))

$${find}\:\:{lim}\:_{{x}\rightarrow−\infty} \:\:\:\:\:\frac{{x}^{\mathrm{4}} \:+\mathrm{1}}{{cotan}\left(\frac{\mathrm{1}}{{x}}\right)} \\ $$

Question Number 40088    Answers: 0   Comments: 0

calculate lim_(x→+∞) x^2 sin((1/x))

$${calculate}\:\:\:{lim}_{{x}\rightarrow+\infty} \:\:\:{x}^{\mathrm{2}} {sin}\left(\frac{\mathrm{1}}{{x}}\right) \\ $$

Question Number 40087    Answers: 0   Comments: 0

find lim_(x→0) sinx{x−[(1/x)]}

$${find}\:\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:{sinx}\left\{{x}−\left[\frac{\mathrm{1}}{{x}}\right]\right\} \\ $$

Question Number 40086    Answers: 0   Comments: 0

find lim_(x→0) x [(1/x)]

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:{x}\:\left[\frac{\mathrm{1}}{{x}}\right] \\ $$

Question Number 40085    Answers: 0   Comments: 0

calculate lim_(x→(π/3)) ((tan(x)tan(x−(π/3)))/(1−2cosx))

$${calculate}\:{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{3}}} \:\:\:\:\:\frac{{tan}\left({x}\right){tan}\left({x}−\frac{\pi}{\mathrm{3}}\right)}{\mathrm{1}−\mathrm{2}{cosx}} \\ $$

Question Number 40084    Answers: 0   Comments: 0

calculate lim_(x→(π/4)) ((sin(2x)sin(x−(π/4)))/(sinx −cosx))

$${calculate}\:{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{4}}} \:\:\:\:\frac{{sin}\left(\mathrm{2}{x}\right){sin}\left({x}−\frac{\pi}{\mathrm{4}}\right)}{{sinx}\:−{cosx}} \\ $$

Question Number 40083    Answers: 1   Comments: 2

solve for x: 5^x + 5x = 140

$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x}:\:\:\:\:\:\mathrm{5}^{\mathrm{x}} \:+\:\mathrm{5x}\:=\:\mathrm{140} \\ $$

Question Number 40166    Answers: 1   Comments: 0

  Pg 1671      Pg 1672      Pg 1673      Pg 1674      Pg 1675      Pg 1676      Pg 1677      Pg 1678      Pg 1679      Pg 1680   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com