Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1675

Question Number 31808    Answers: 0   Comments: 2

The numeric value of the expression is: ((Sec 1320°)/2) − 2 ∙ cos (((53π)/3)) + (tg 2220°)^2

$$\mathrm{The}\:\mathrm{numeric}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expression}\:\mathrm{is}: \\ $$$$ \\ $$$$\frac{\mathrm{Sec}\:\mathrm{1320}°}{\mathrm{2}}\:−\:\mathrm{2}\:\centerdot\:\mathrm{cos}\:\left(\frac{\mathrm{53}\pi}{\mathrm{3}}\right)\:+\:\left(\mathrm{tg}\:\mathrm{2220}°\right)^{\mathrm{2}} \\ $$

Question Number 31804    Answers: 1   Comments: 0

A quadratic equation p(x)=0 having coefficient of x^2 unity is such that p(x)=0 and p(p(p(x)))=0 have a common root then, prove that : p(0)×p(1)=0.

$${A}\:{quadratic}\:{equation}\:{p}\left({x}\right)=\mathrm{0}\:{having} \\ $$$${coefficient}\:{of}\:{x}^{\mathrm{2}} \:{unity}\:{is}\:{such}\:{that} \\ $$$${p}\left({x}\right)=\mathrm{0}\:{and}\:{p}\left({p}\left({p}\left({x}\right)\right)\right)=\mathrm{0}\:{have}\:{a}\: \\ $$$${common}\:{root}\:{then}, \\ $$$${prove}\:{that}\::\:\:{p}\left(\mathrm{0}\right)×{p}\left(\mathrm{1}\right)=\mathrm{0}. \\ $$

Question Number 31794    Answers: 0   Comments: 2

Question Number 31792    Answers: 0   Comments: 4

Question Number 31787    Answers: 2   Comments: 0

∫((4x−3)/(x^2 +3x+8))dx

$$\int\frac{\mathrm{4}{x}−\mathrm{3}}{{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{8}}{dx} \\ $$

Question Number 31785    Answers: 1   Comments: 0

A= [((1 5)),((6 7)) ]find A^k

$${A}=\:\begin{bmatrix}{\mathrm{1}\:\mathrm{5}}\\{\mathrm{6}\:\mathrm{7}}\end{bmatrix}{find}\:{A}^{{k}} \\ $$

Question Number 31772    Answers: 0   Comments: 0

Question Number 31771    Answers: 1   Comments: 1

Consider a sequence in the form of groups (1),(2,2),(3,3,3),(4,4,4,4), (5,5,5,5,5),............ then the 2000th term of the above sequence is : ?

$${Consider}\:{a}\:{sequence}\:{in}\:{the}\:{form}\:{of} \\ $$$${groups}\:\left(\mathrm{1}\right),\left(\mathrm{2},\mathrm{2}\right),\left(\mathrm{3},\mathrm{3},\mathrm{3}\right),\left(\mathrm{4},\mathrm{4},\mathrm{4},\mathrm{4}\right), \\ $$$$\left(\mathrm{5},\mathrm{5},\mathrm{5},\mathrm{5},\mathrm{5}\right),............ \\ $$$${then}\:{the}\:\mathrm{2000}{th}\:{term}\:{of}\:{the}\:{above}\: \\ $$$${sequence}\:{is}\::\:? \\ $$

Question Number 31768    Answers: 0   Comments: 0

Please help What is the kinetic energy of the earth?Please prove the result. Thanks in advance!

$${Please}\:{help} \\ $$$$ \\ $$$${What}\:{is}\:{the}\:{kinetic}\:{energy}\:{of}\:{the} \\ $$$${earth}?{Please}\:{prove}\:{the}\:{result}. \\ $$$$ \\ $$$${Thanks}\:{in}\:{advance}! \\ $$

Question Number 31767    Answers: 0   Comments: 0

calculate the angular velocity of the earth about its axis and its angular velocity about the axis and the sun.

$${calculate}\:{the}\:{angular}\:{velocity}\:{of} \\ $$$${the}\:{earth}\:{about}\:{its}\:{axis}\:{and}\:{its} \\ $$$${angular}\:{velocity}\:{about}\:{the}\:{axis}\: \\ $$$${and}\:{the}\:{sun}. \\ $$

Question Number 31766    Answers: 0   Comments: 1

Calculate the moment of inertia of the earth abouth its axis.If the mass of the earth is 6.0×10^(34) kg and radius 6.4×10^6 m. (Assume the earth to be a perfect sphere)

$${Calculate}\:{the}\:{moment}\:{of}\:{inertia} \\ $$$${of}\:{the}\:{earth}\:{abouth}\:{its}\:{axis}.{If} \\ $$$${the}\:{mass}\:{of}\:{the}\:{earth}\:{is}\:\mathrm{6}.\mathrm{0}×\mathrm{10}^{\mathrm{34}} {kg} \\ $$$${and}\:{radius}\:\mathrm{6}.\mathrm{4}×\mathrm{10}^{\mathrm{6}} {m}. \\ $$$$\left({Assume}\:{the}\:{earth}\:{to}\:{be}\:{a}\:{perfect}\right. \\ $$$$\left.{sphere}\right) \\ $$

Question Number 31763    Answers: 3   Comments: 0

please find the integral solutions (x and y) (xy−7)^2 =x^2 +y^2

$${please}\:{find}\:{the}\:{integral}\:{solutions}\:\left({x}\:{and}\:{y}\right)\: \\ $$$$\left({xy}−\mathrm{7}\right)^{\mathrm{2}} \:={x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \\ $$

Question Number 31749    Answers: 0   Comments: 2

find the value of Σ_(n=0) ^∞ (1/(3^n (n+1)(n+2))) .

$${find}\:{the}\:{value}\:{of}\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\mathrm{3}^{{n}} \left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}\:. \\ $$

Question Number 31748    Answers: 0   Comments: 3

1)find the value of Σ_(n=0) ^∞ (x^(3n) /((3n)!)) 2) find Σ_(n=0) ^∞ (8^n /((3n)!)) .

$$\left.\mathrm{1}\right){find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{3}{n}} }{\left(\mathrm{3}{n}\right)!} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{8}^{{n}} }{\left(\mathrm{3}{n}\right)!}\:\:. \\ $$

Question Number 31747    Answers: 0   Comments: 1

let give ∣λ∣<1 and u_n = ∫_0 ^π ((cos(nx))/(1−2λ cosx +λ^2 )) prove that Σ_(n=0) ^∞ u_n is convergent and find its sum .

$${let}\:{give}\:\mid\lambda\mid<\mathrm{1}\:{and}\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{cos}\left({nx}\right)}{\mathrm{1}−\mathrm{2}\lambda\:{cosx}\:+\lambda^{\mathrm{2}} } \\ $$$${prove}\:{that}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}_{{n}} \:{is}\:{convergent}\:{and}\:{find}\:{its}\:{sum}\:. \\ $$

Question Number 31743    Answers: 1   Comments: 0

Find the value of : Σ_(i=0) ^∞ Σ_(j=0) ^∞ Σ_(k=0) ^∞ (1/(3^i 3^j 3^k )). case 1: i≠j≠k. case 2: i<j<k.

$$\:{Find}\:{the}\:{value}\:{of}\::\:\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{j}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{3}^{{i}} \mathrm{3}^{{j}} \mathrm{3}^{{k}} }. \\ $$$${case}\:\mathrm{1}:\:{i}\neq{j}\neq{k}. \\ $$$${case}\:\mathrm{2}:\:{i}<{j}<{k}. \\ $$

Question Number 31740    Answers: 1   Comments: 0

Consider a particle in a uniform charge electric field.If the particle has a charge of 2C an is placed 3m away from the charge flate. Calculate the work needed to move the 2C particle to a distance of 1m from the plate. Plzz help

$$\boldsymbol{\mathcal{C}{onsider}}\:\boldsymbol{{a}}\:\boldsymbol{{particle}}\:\boldsymbol{{in}}\:\boldsymbol{{a}}\:\boldsymbol{{uniform}} \\ $$$$\boldsymbol{{charge}}\:\boldsymbol{{electric}}\:\boldsymbol{{field}}.\boldsymbol{{If}}\:\boldsymbol{{the}} \\ $$$$\boldsymbol{{particle}}\:\boldsymbol{{has}}\:\boldsymbol{{a}}\:\boldsymbol{{charge}}\:\boldsymbol{{of}}\:\:\mathrm{2}\boldsymbol{{C}} \\ $$$$\boldsymbol{{an}}\:\boldsymbol{{is}}\:\boldsymbol{{placed}}\:\mathrm{3}\boldsymbol{{m}}\:\boldsymbol{{away}}\:\boldsymbol{{from}} \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{charge}}\:\boldsymbol{{flate}}. \\ $$$$\boldsymbol{{Calculate}}\:\boldsymbol{{the}}\:\boldsymbol{{work}}\:\boldsymbol{{needed}} \\ $$$$\boldsymbol{{to}}\:\boldsymbol{{move}}\:\boldsymbol{{the}}\:\mathrm{2}\boldsymbol{{C}}\:\boldsymbol{{particle}} \\ $$$$\boldsymbol{{to}}\:\boldsymbol{{a}}\:\boldsymbol{{distance}}\:\boldsymbol{{of}}\:\mathrm{1}\boldsymbol{{m}}\:\boldsymbol{{from}}\:\boldsymbol{{the}} \\ $$$$\boldsymbol{{plate}}. \\ $$$$ \\ $$$$\boldsymbol{{Plzz}}\:\boldsymbol{{help}} \\ $$$$ \\ $$

Question Number 31734    Answers: 1   Comments: 0

Question Number 31745    Answers: 1   Comments: 0

pls, why is cos^4 −sin^(4 ) = cos^2 −sin^2 ?

$$\mathrm{pls},\:\mathrm{why}\:\mathrm{is}\:\mathrm{cos}^{\mathrm{4}} −\mathrm{sin}^{\mathrm{4}\:} \:=\:\mathrm{cos}^{\mathrm{2}} −\mathrm{sin}^{\mathrm{2}} ? \\ $$

Question Number 31726    Answers: 1   Comments: 3

Let a_1 = (1/2) , a_(k+1) =a_k ^2 +a_k ∀ k≥ 1. then a_(101) is greater than a) 1 b) 2 c) 3 d) 4 .

$${Let}\:{a}_{\mathrm{1}} =\:\frac{\mathrm{1}}{\mathrm{2}}\:,\:{a}_{{k}+\mathrm{1}} ={a}_{{k}} ^{\mathrm{2}} +{a}_{{k}} \forall\:{k}\geqslant\:\mathrm{1}. \\ $$$${then}\:{a}_{\mathrm{101}} \:\:{is}\:{greater}\:{than} \\ $$$$\left.{a}\right)\:\mathrm{1}\: \\ $$$$\left.{b}\right)\:\mathrm{2} \\ $$$$\left.{c}\right)\:\mathrm{3} \\ $$$$\left.{d}\right)\:\mathrm{4}\:. \\ $$

Question Number 31719    Answers: 0   Comments: 3

Question Number 31717    Answers: 1   Comments: 0

Question Number 31715    Answers: 0   Comments: 0

Question Number 31714    Answers: 0   Comments: 0

Prove that Σ_1 ^(n−2) k ((( n−2)),(( k)) ) (((n+2)),((k+2)) ) = (n−2) (((2n−1)),((n−1)) )

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\underset{\mathrm{1}} {\overset{{n}−\mathrm{2}} {\sum}}{k}\begin{pmatrix}{\:{n}−\mathrm{2}}\\{\:\:{k}}\end{pmatrix}\begin{pmatrix}{{n}+\mathrm{2}}\\{{k}+\mathrm{2}}\end{pmatrix}\:=\:\left({n}−\mathrm{2}\right)\begin{pmatrix}{\mathrm{2}{n}−\mathrm{1}}\\{{n}−\mathrm{1}}\end{pmatrix} \\ $$

Question Number 31713    Answers: 0   Comments: 3

Given n ∈ N prove that Σ_(k=1) ^n k(n+1−k)= ((( n+2)),(( 3)) )

$$\mathrm{Given}\:{n}\:\in\:\mathbb{N} \\ $$$$\mathrm{prove}\:\mathrm{that} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\left({n}+\mathrm{1}−{k}\right)=\begin{pmatrix}{\:{n}+\mathrm{2}}\\{\:\:\:\:\:\mathrm{3}}\end{pmatrix} \\ $$

Question Number 31712    Answers: 0   Comments: 0

let f convex function on [0, 2π] with f ′′(x) ≤ M . find values a and b so a≤∫_0 ^(2π) f(x)cos x dx ≤bM

$$\mathrm{let}\:{f}\:\mathrm{convex}\:\mathrm{function}\:\mathrm{on}\:\left[\mathrm{0},\:\mathrm{2}\pi\right] \\ $$$$\mathrm{with}\:{f}\:''\left({x}\right)\:\leqslant\:{M}\:. \\ $$$$\mathrm{find}\:\mathrm{values}\:{a}\:\mathrm{and}\:{b}\:\:\mathrm{so} \\ $$$${a}\leqslant\int_{\mathrm{0}} ^{\mathrm{2}\pi} {f}\left({x}\right)\mathrm{cos}\:{x}\:{dx}\:\leqslant{bM} \\ $$

  Pg 1670      Pg 1671      Pg 1672      Pg 1673      Pg 1674      Pg 1675      Pg 1676      Pg 1677      Pg 1678      Pg 1679   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com