Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1675
Question Number 40147 Answers: 0 Comments: 2
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}} \:\:\sqrt{{x}^{\mathrm{3}} \left(\mathrm{2}−{x}\right)}{dx} \\ $$
Question Number 40146 Answers: 1 Comments: 1
$${find}\:\:\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\sqrt{\mathrm{4}{x}^{\mathrm{2}} \:−\mathrm{1}}\:+\sqrt{\mathrm{4}{x}^{\mathrm{2}} \:+\mathrm{1}}} \\ $$
Question Number 40145 Answers: 1 Comments: 1
$${calculate}\:\int_{−\mathrm{7}} ^{−\mathrm{3}} \:\:\:\frac{\left({x}−\mathrm{1}\right){dx}}{\sqrt{{x}^{\mathrm{2}} \:+\mathrm{2}{x}−\mathrm{3}}} \\ $$
Question Number 40144 Answers: 1 Comments: 0
$${find}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} {x}\sqrt{{x}^{\mathrm{2}} \:−\mathrm{2}{x}\:+\mathrm{5}}\:{dx} \\ $$
Question Number 40143 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\:\frac{{tan}\left({x}\right){dx}}{\sqrt{\mathrm{2}}{cos}\left({x}\right)\:+\mathrm{2}{sin}^{\mathrm{2}} \left({x}\right)} \\ $$
Question Number 40141 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\frac{{dx}}{\mathrm{3}+{sinx}} \\ $$
Question Number 40136 Answers: 1 Comments: 0
$${let}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:{e}^{−{x}} {dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{\mathrm{1}} \:\:\:{and}\:{A}_{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\:\:{A}_{{n}+\mathrm{1}} =\left({n}+\mathrm{1}\right){A}_{{n}} \:−\frac{\mathrm{1}}{{e}} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{A}_{\mathrm{3}} \:\:\:,\:{A}_{\mathrm{4}} ,\:{and}\:{A}_{\mathrm{5}} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(−{x}^{\mathrm{3}} \:+\mathrm{2}{x}^{\mathrm{2}\:} \:−{x}\right){e}^{−{x}} \:{dx} \\ $$
Question Number 40138 Answers: 0 Comments: 2
$${let}\:\:{a}_{{k}} \:\:\:=\int_{−\frac{\pi}{\mathrm{2}\:}\:+{k}\pi} ^{−\frac{\pi}{\mathrm{2}}\:+\left({k}+\mathrm{1}\right)\pi} \:{e}^{−{t}} \:{cost}\:{dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{a}_{{k}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\mid{a}_{{k}} \mid. \\ $$
Question Number 40134 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\frac{{x}^{\mathrm{3}} }{\left(\mathrm{1}+{x}^{\mathrm{4}} \right)^{\mathrm{2}} }{dx} \\ $$
Question Number 40133 Answers: 0 Comments: 1
$${find}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$
Question Number 40132 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$
Question Number 40131 Answers: 1 Comments: 0
$${find}\:{the}\:{value}\:{of}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{\mathrm{1}+{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{6}} }{dx} \\ $$
Question Number 40130 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:{cos}^{\mathrm{4}} {x}\:{sin}^{\mathrm{2}} {xdx} \\ $$
Question Number 40129 Answers: 1 Comments: 0
$${calculate}\:{I}\:=\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\frac{{ln}\left(\mathrm{1}+{t}\right)}{{t}^{\mathrm{2}} }{dt} \\ $$
Question Number 40128 Answers: 0 Comments: 1
$${calculate}\:\:\:\int_{−\mathrm{2}} ^{−\mathrm{1}} \:\:\:\:\:\frac{{dt}}{{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\:. \\ $$
Question Number 40127 Answers: 1 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{e}^{{x}} −\mathrm{1}}{{e}^{{x}} \:+\mathrm{1}}{dx} \\ $$
Question Number 40126 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{tdt}}{\mathrm{1}+{t}^{\mathrm{4}} } \\ $$
Question Number 40125 Answers: 0 Comments: 0
$${let}\:{z}_{\mathrm{0}} =\mathrm{0}\:\:{and}\:\:\forall{n}\:\in{N}\:\:\:{z}_{{n}+\mathrm{1}} =\frac{{i}}{\mathrm{2}}{z}_{{n}} \:+\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:\:{find}\:\:{z}_{{n}} {at}\:{form}\:{of}\:{sum} \\ $$$$\left.\mathrm{2}\right){let}\:{W}_{{n}} \:\:={z}_{{n}} \:\:\:\:−\frac{\mathrm{1}+{i}}{\mathrm{2}}\:\:\:{find}\:{lim}\:\mid{W}_{{n}} \mid\left({n}\rightarrow+\infty\right) \\ $$
Question Number 40124 Answers: 0 Comments: 0
$${let}\:{u}_{\mathrm{0}} \geqslant\mathrm{4}\:\:{and}\:\:{u}_{{n}+\mathrm{1}} =\mathrm{2}{u}_{{n}} −\mathrm{3} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{u}_{{n}} \:{interms}\:{of}\:{u}_{\mathrm{0}} \:{and}\:{n} \\ $$$$\left.\mathrm{2}\right){study}\:{the}\:{convergence}\:{of}\:\left({u}^{{n}} \right) \\ $$
Question Number 40123 Answers: 1 Comments: 0
$${study}\:{the}\:{convergence}\:{of} \\ $$$${v}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} }{\mathrm{2}^{{k}} \:+{ln}\left({k}\right)} \\ $$
Question Number 40122 Answers: 0 Comments: 0
$${let}\:{u}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\left(\mathrm{2}{k}\right)!} \\ $$$${prove}\:{that}\:\left({u}_{{n}} \right)\:{converges} \\ $$
Question Number 40121 Answers: 0 Comments: 0
$${find}\:{assymptotes}\:{of}\:{f}\left({x}\right)=\sqrt{{x}^{\mathrm{4}} \:−{x}^{\mathrm{2}} \:+{x}−\mathrm{1}}\:−\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$
Question Number 40120 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{\left(\mathrm{1}+{sinx}\right)^{\frac{\mathrm{1}}{{x}}} \:−{e}^{\mathrm{1}−\frac{{x}}{\mathrm{2}}} }{\left(\mathrm{1}+{tanx}\right)^{\frac{\mathrm{1}}{{x}}} \:−{e}^{\mathrm{1}−\frac{{x}}{\mathrm{2}}} } \\ $$
Question Number 40119 Answers: 0 Comments: 0
$${find}\:{lim}_{{x}\rightarrow+\infty} \:\left({chx}\right)^{{sh}\left({x}\right)} \:\:−\left({shx}\right)^{{ch}\left({x}\right)} \\ $$
Question Number 40118 Answers: 0 Comments: 1
$${calculate}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\:\frac{\mathrm{2}{x}}{{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right)}\:−{cosx} \\ $$
Question Number 40117 Answers: 0 Comments: 0
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{\mathrm{1}}{{sin}^{\mathrm{4}} {x}}\left\{\:{sin}\left(\frac{{x}}{\mathrm{1}−{x}}\right)−\frac{{sinx}}{\mathrm{1}−{sinx}}\right\} \\ $$
Pg 1670 Pg 1671 Pg 1672 Pg 1673 Pg 1674 Pg 1675 Pg 1676 Pg 1677 Pg 1678 Pg 1679
Terms of Service
Privacy Policy
Contact: info@tinkutara.com