Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1675
Question Number 32382 Answers: 2 Comments: 2
$$\mathrm{If}\:\mathrm{the}\:\mathrm{equation}\:{ax}^{\mathrm{2}} +\mathrm{2}{bx}−\mathrm{3}{c}=\mathrm{0}\:\mathrm{has} \\ $$$$\mathrm{no}\:\mathrm{real}\:\mathrm{roots}\:\mathrm{and}\:\left(\frac{\mathrm{3}{c}}{\mathrm{4}}\right)<\:{a}+{b},\:\mathrm{then} \\ $$
Question Number 32380 Answers: 1 Comments: 2
Question Number 32379 Answers: 1 Comments: 0
Question Number 32376 Answers: 4 Comments: 1
Question Number 32369 Answers: 0 Comments: 0
$${prove}\:{that}\:\:{n}^{−\alpha} \:\sim\:\int_{{n}} ^{{n}+\mathrm{1}} \:{t}^{−\alpha} {dt} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{{k}^{\alpha} }\:\sim\:\:\frac{{n}^{\mathrm{1}−\alpha} }{\mathrm{1}−\alpha}\:{if}\:\:\alpha<\mathrm{1}\:{and} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{{k}^{\alpha} }\:\sim\:{ln}\left({n}\right)\:{if}\:\alpha=\mathrm{1}\:. \\ $$
Question Number 32367 Answers: 0 Comments: 0
$${let}\:\alpha\in{R}\:{and}\:{x}^{\mathrm{2}} \neq\mathrm{1}\:\:{find}\:{the}\:{value}\:{of} \\ $$$${f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:{ln}\left({x}^{\mathrm{2}} −\mathrm{2}{x}\:{cost}\:+\mathrm{1}\right){dt} \\ $$$${calculate}\:{f}\left({x}\right). \\ $$
Question Number 32365 Answers: 0 Comments: 3
$${let}\:{F}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:{ln}\left(\mathrm{1}+{xcos}\theta\right){d}\theta\:.{with}\:\mid{x}\mid<\mathrm{1} \\ $$$${find}\:{F}\left({x}\right)\:. \\ $$
Question Number 32364 Answers: 0 Comments: 1
$${let}\:\:{u}_{{n}} =\:\left({e}\:−\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} \right)^{\sqrt{{n}^{\mathrm{2}} \:+\mathrm{2}}\:\:−\sqrt{{n}^{\mathrm{2}} \:+\mathrm{1}}} \\ $$$${find}\:\:{lim}\:{u}_{{n}} \\ $$
Question Number 32363 Answers: 0 Comments: 1
$${let}\:{consider}\:{the}\:{function} \\ $$$${f}\left({x},\theta\right)\:=\:\:\int_{{x}} ^{{x}^{\mathrm{2}} } {ln}\left(\:\mathrm{2}+{sin}\theta\:{cost}\right){dt} \\ $$$${calculate}\:\frac{\partial{f}}{\partial{x}}\left({x},\theta\right)\:{and}\:\:\frac{\partial{f}}{\partial\theta}\left({x},\theta\right)\:. \\ $$
Question Number 32362 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left(\mathrm{2}{x}+\mathrm{1}\right)\left(\mathrm{2}{x}+\mathrm{3}\right)\left(\mathrm{2}{x}+\mathrm{5}\right)}\:. \\ $$
Question Number 32361 Answers: 0 Comments: 1
$${let}\:{give}\:{a}>\mathrm{0}\:{find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−{x}} }{\sqrt{{x}+{a}}}\:{dx}. \\ $$
Question Number 32360 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{2}{x}+\mathrm{1}\right)\left(\mathrm{2}{x}+\mathrm{3}\right)}\:. \\ $$
Question Number 32359 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)}\:. \\ $$
Question Number 32357 Answers: 1 Comments: 0
$${x}^{\mathrm{2}} +{ax}−\mathrm{24}=\mathrm{0} \\ $$$${root}\:{is}\:{integer} \\ $$$${a}\:\:\:{range} \\ $$$$ \\ $$$${i}\:{cant}\:{speak}\:{english}\:{well}.\:{sorry} \\ $$
Question Number 32354 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{sin}^{\mathrm{2}} {t}\right)^{\mathrm{2}} }\:. \\ $$
Question Number 32353 Answers: 1 Comments: 0
$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{cos}\left({x}\right){ln}\left({cos}\left({x}\right)\right){dx}\:. \\ $$
Question Number 32352 Answers: 1 Comments: 2
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctan}\left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right){dx} \\ $$
Question Number 32351 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\frac{{dt}}{\mathrm{1}+{cos}\theta\:{sint}}\:.\: \\ $$
Question Number 32350 Answers: 0 Comments: 0
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:^{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)}\:{dx} \\ $$
Question Number 32349 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{xdx}}{\mathrm{1}+{sinx}}\:. \\ $$
Question Number 32348 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right){let}\:{n}\:\in{Nand}\:\:\:{A}_{{n}} \:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{1}+{cos}^{\mathrm{2}} \left({nx}\right)}\:.{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{f}\in\:{C}^{\mathrm{0}} \left(\left[\mathrm{0},\pi\right],\:{R}\right)\:{find}\:{lim}_{{n}\rightarrow\infty} \:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{f}\left({x}\right)}{\mathrm{1}+{cos}^{\mathrm{2}} \left({nx}\right)}{dx}\:. \\ $$
Question Number 32346 Answers: 0 Comments: 0
$${let}\:{u}_{\mathrm{0}} =\mathrm{1}\:{and}\:\:{u}_{{n}+\mathrm{1}} =\:{u}_{{n}} \:\frac{\mathrm{1}+\mathrm{2}{u}_{{n}} }{\mathrm{1}+\mathrm{3}{n}} \\ $$$${give}\:{a}\:{equivalent}\:{of}\:{u}_{{n}\:} \\ $$
Question Number 32345 Answers: 0 Comments: 0
$${calculate}\:{lim}_{{n}\rightarrow\infty} \:\:\sum_{{i}=\mathrm{1}} ^{{n}} \:\sum_{{j}=\mathrm{1}} ^{{n}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{i}+{j}} }{{i}+{j}}\:. \\ $$
Question Number 32344 Answers: 0 Comments: 0
$${let}\:\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{ch}\left(\frac{\mathrm{1}}{\sqrt{{k}+{n}}}\right)\:−{n} \\ $$$${prove}\:{that}\:{u}_{{n}} \:{is}\:{convergent}\:{and}\:{find}\:{its}\:{limit}. \\ $$
Question Number 32343 Answers: 1 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\frac{{dt}}{{x}−{e}^{{it}} }\:\:. \\ $$
Question Number 32342 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\int\int_{{D}} \:\:\:\frac{{dxdy}}{\left(\mathrm{4}{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${D}=\left\{\left({x},{y}\right)\in\:{R}^{\mathrm{2}} \:/\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:\leqslant\mathrm{1}\:{and}\:{y}\:\leqslant\mathrm{2}{x}\:\right\}\:. \\ $$
Pg 1670 Pg 1671 Pg 1672 Pg 1673 Pg 1674 Pg 1675 Pg 1676 Pg 1677 Pg 1678 Pg 1679
Terms of Service
Privacy Policy
Contact: info@tinkutara.com