Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1675

Question Number 40105    Answers: 0   Comments: 1

let f(x) = x^n e^(−2nx) with n integr natural calculate f^((n)) (0).

$${let}\:\:{f}\left({x}\right)\:=\:{x}^{{n}} \:{e}^{−\mathrm{2}{nx}} \:\:\:\:{with}\:{n}\:{integr}\:{natural} \\ $$$$\:{calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right). \\ $$

Question Number 40104    Answers: 0   Comments: 0

find number of solution for the equation (e^x /(2(x+1)^2 )) =1 .

$${find}\:{number}\:{of}\:{solution}\:{for}\:{the}\:{equation} \\ $$$$\frac{{e}^{{x}} }{\mathrm{2}\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:=\mathrm{1}\:. \\ $$

Question Number 40103    Answers: 0   Comments: 0

let g(x)=(√(−x+(√(1+x^2 )))) 1) prove that g is solution for the differencial equation 4(1+x^2 )y^(′′) +4xy^′ −y =0 .prove that g is C^∞ on R 2) determine a relation between g^((n)) (0) and g^((n+2)) (0)

$${let}\:{g}\left({x}\right)=\sqrt{−{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{g}\:{is}\:{solution}\:{for}\:{the}\:{differencial}\:{equation} \\ $$$$\mathrm{4}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}^{''} \:+\mathrm{4}{xy}^{'} \:−{y}\:=\mathrm{0}\:\:\:.{prove}\:{that}\:{g}\:{is}\:{C}^{\infty} {on}\:{R} \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{a}\:{relation}\:{between}\:{g}^{\left({n}\right)} \left(\mathrm{0}\right)\:{and}\:{g}^{\left({n}+\mathrm{2}\right)} \left(\mathrm{0}\right) \\ $$

Question Number 40102    Answers: 2   Comments: 0

let f(x) = ((∣x∣)/((1+∣1−x^2 ∣)^n )) study tbe derivability of f at points 0 and 1 (n natural integr)

$${let}\:{f}\left({x}\right)\:=\:\frac{\mid{x}\mid}{\left(\mathrm{1}+\mid\mathrm{1}−{x}^{\mathrm{2}} \mid\right)^{{n}} } \\ $$$${study}\:{tbe}\:{derivability}\:{of}\:{f}\:{at}\:{points}\:\mathrm{0}\:{and}\:\mathrm{1}\:\left({n}\:{natural}\:{integr}\right) \\ $$

Question Number 40101    Answers: 0   Comments: 0

study the variation of f(x)=arcsin(2x(√(1−x^2 )) ) and give its graph

$${study}\:\:{the}\:{variation}\:{of}\:{f}\left({x}\right)={arcsin}\left(\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\right)\:{and}\:{give}\:{its}\:{graph} \\ $$

Question Number 40100    Answers: 0   Comments: 1

solve arctan(2x) +arctan(3x)=(π/4)

$${solve}\:\:\:{arctan}\left(\mathrm{2}{x}\right)\:+{arctan}\left(\mathrm{3}{x}\right)=\frac{\pi}{\mathrm{4}} \\ $$

Question Number 40099    Answers: 0   Comments: 0

solve arcsin(((2x)/(1+x^2 ))) =(π/3)

$${solve}\:\:{arcsin}\left(\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right)\:=\frac{\pi}{\mathrm{3}} \\ $$

Question Number 40098    Answers: 0   Comments: 0

solve arcsin(sinx) =(π/9)

$${solve}\:\:{arcsin}\left({sinx}\right)\:=\frac{\pi}{\mathrm{9}} \\ $$

Question Number 40097    Answers: 0   Comments: 2

let f(x)=ln(√((2+x)/(2−x))) 1) find D_f and find the assymptotes to C_f 2) calculate f^′ (x) and give the variation of f 3) give the graph of f 4) give the equation of tangent to C_(f ) at point E((1/2),f((1/2))) 5) calculate ∫_0 ^1 f(x)dx .

$${let}\:{f}\left({x}\right)={ln}\sqrt{\frac{\mathrm{2}+{x}}{\mathrm{2}−{x}}} \\ $$$$\left.\mathrm{1}\right)\:\:{find}\:{D}_{{f}} \:\:\:\:{and}\:{find}\:{the}\:{assymptotes}\:{to}\:{C}_{{f}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({x}\right)\:{and}\:{give}\:{the}\:{variation}\:{of}\:{f} \\ $$$$\left.\mathrm{3}\right)\:{give}\:{the}\:{graph}\:{of}\:{f} \\ $$$$\left.\mathrm{4}\right)\:{give}\:{the}\:{equation}\:{of}\:{tangent}\:{to}\:{C}_{{f}\:} \:\:\:{at}\:{point}\:\:{E}\left(\frac{\mathrm{1}}{\mathrm{2}},{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$$\left.\mathrm{5}\right)\:{calculate}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}\:. \\ $$

Question Number 40095    Answers: 1   Comments: 0

let f(x) =cos(x)cos((1/x)) is f have a limit at point 0?

$${let}\:{f}\left({x}\right)\:={cos}\left({x}\right){cos}\left(\frac{\mathrm{1}}{{x}}\right)\:\:{is}\:{f}\:\:{have}\:{a}\:{limit}\:{at}\:{point}\:\mathrm{0}? \\ $$$$ \\ $$

Question Number 40094    Answers: 0   Comments: 0

find lim _(x→0^+ ) ln(x)tan{ln(1+x)}

$${find}\:\:{lim}\:_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:\:\:{ln}\left({x}\right){tan}\left\{{ln}\left(\mathrm{1}+{x}\right)\right\} \\ $$

Question Number 40093    Answers: 0   Comments: 0

find lim _(x→0) ((ln(cosx))/(1−cos(2x)))

$${find}\:\:{lim}\:_{{x}\rightarrow\mathrm{0}} \:\:\frac{{ln}\left({cosx}\right)}{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)} \\ $$

Question Number 40092    Answers: 0   Comments: 1

calculate lim_(x→+∞) (1/x) tan(((πx)/(2x+3)))

$${calculate}\:{lim}_{{x}\rightarrow+\infty} \:\:\:\:\:\:\frac{\mathrm{1}}{{x}}\:{tan}\left(\frac{\pi{x}}{\mathrm{2}{x}+\mathrm{3}}\right) \\ $$

Question Number 40091    Answers: 0   Comments: 1

find a equivalent to f(x)=cos(sinx) for x∈v(0) 2) find a equivalent to g(x)= tan((π/(2x+1))) (x→0)

$${find}\:{a}\:{equivalent}\:{to}\:{f}\left({x}\right)={cos}\left({sinx}\right)\:{for}\:{x}\in{v}\left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{equivalent}\:{to}\:{g}\left({x}\right)=\:{tan}\left(\frac{\pi}{\mathrm{2}{x}+\mathrm{1}}\right)\:\left({x}\rightarrow\mathrm{0}\right) \\ $$

Question Number 40090    Answers: 0   Comments: 1

let f(x)= 1−[x]−[1−x] 1) prove that f is periodic with period 1 2) give a expression of f(x) when x∈[0,1[

$${let}\:{f}\left({x}\right)=\:\mathrm{1}−\left[{x}\right]−\left[\mathrm{1}−{x}\right] \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{f}\:{is}\:{periodic}\:{with}\:{period}\:\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{give}\:{a}\:{expression}\:{of}\:{f}\left({x}\right)\:{when}\:\:{x}\in\left[\mathrm{0},\mathrm{1}\left[\right.\right. \\ $$

Question Number 40089    Answers: 0   Comments: 0

find lim _(x→−∞) ((x^4 +1)/(cotan((1/x))))

$${find}\:\:{lim}\:_{{x}\rightarrow−\infty} \:\:\:\:\:\frac{{x}^{\mathrm{4}} \:+\mathrm{1}}{{cotan}\left(\frac{\mathrm{1}}{{x}}\right)} \\ $$

Question Number 40088    Answers: 0   Comments: 0

calculate lim_(x→+∞) x^2 sin((1/x))

$${calculate}\:\:\:{lim}_{{x}\rightarrow+\infty} \:\:\:{x}^{\mathrm{2}} {sin}\left(\frac{\mathrm{1}}{{x}}\right) \\ $$

Question Number 40087    Answers: 0   Comments: 0

find lim_(x→0) sinx{x−[(1/x)]}

$${find}\:\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:{sinx}\left\{{x}−\left[\frac{\mathrm{1}}{{x}}\right]\right\} \\ $$

Question Number 40086    Answers: 0   Comments: 0

find lim_(x→0) x [(1/x)]

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:{x}\:\left[\frac{\mathrm{1}}{{x}}\right] \\ $$

Question Number 40085    Answers: 0   Comments: 0

calculate lim_(x→(π/3)) ((tan(x)tan(x−(π/3)))/(1−2cosx))

$${calculate}\:{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{3}}} \:\:\:\:\:\frac{{tan}\left({x}\right){tan}\left({x}−\frac{\pi}{\mathrm{3}}\right)}{\mathrm{1}−\mathrm{2}{cosx}} \\ $$

Question Number 40084    Answers: 0   Comments: 0

calculate lim_(x→(π/4)) ((sin(2x)sin(x−(π/4)))/(sinx −cosx))

$${calculate}\:{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{4}}} \:\:\:\:\frac{{sin}\left(\mathrm{2}{x}\right){sin}\left({x}−\frac{\pi}{\mathrm{4}}\right)}{{sinx}\:−{cosx}} \\ $$

Question Number 40083    Answers: 1   Comments: 2

solve for x: 5^x + 5x = 140

$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x}:\:\:\:\:\:\mathrm{5}^{\mathrm{x}} \:+\:\mathrm{5x}\:=\:\mathrm{140} \\ $$

Question Number 40166    Answers: 1   Comments: 0

Question Number 40067    Answers: 0   Comments: 2

let S_n = Σ_(k=1) ^n (((−1)^k )/k) 1) calculate S_n interms of H_n 2) find lim_(n→+∞) S_n 3) let W_n = Σ_(1≤i<j≤n) (((−1)^(i+j) )/(i.j)) prove that (W_n ) is convergent and calculste its limit.

$${let}\:\:{S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{S}_{{n}} \:{interms}\:{of}\:{H}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{let}\:{W}_{{n}} =\:\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} \frac{\left(−\mathrm{1}\right)^{{i}+{j}} }{{i}.{j}} \\ $$$${prove}\:{that}\:\left({W}_{{n}} \right)\:{is}\:{convergent}\:{and}\:{calculste}\:{its} \\ $$$${limit}. \\ $$

Question Number 40063    Answers: 1   Comments: 0

Question Number 40060    Answers: 0   Comments: 0

Mr John bought a four roomed house for 2520000bucks. these rooms are rented out to four students ,at 9000 buck per month for each room. a) find the rents collected at the end of each year.if each year 72000 bucks is spent on repairs. b) find the real annual income on the house

$${Mr}\:{John}\:{bought}\:{a}\:{four}\:{roomed} \\ $$$${house}\:{for}\:\mathrm{2520000}{bucks}. \\ $$$${these}\:{rooms}\:{are}\:{rented}\:{out} \\ $$$${to}\:{four}\:{students}\:,{at}\:\mathrm{9000}\:{buck} \\ $$$${per}\:{month}\:{for}\:{each}\:{room}. \\ $$$$\left.{a}\right)\:{find}\:{the}\:{rents}\:{collected}\:{at}\:{the}\:{end} \\ $$$${of}\:{each}\:{year}.{if}\:{each}\:{year}\:\mathrm{72000}\:{bucks} \\ $$$${is}\:{spent}\:{on}\:{repairs}. \\ $$$$\left.{b}\right)\:{find}\:{the}\:{real}\:{annual}\:{income}\:{on}\:{the}\:{house} \\ $$$$ \\ $$

  Pg 1670      Pg 1671      Pg 1672      Pg 1673      Pg 1674      Pg 1675      Pg 1676      Pg 1677      Pg 1678      Pg 1679   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com