Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1675

Question Number 38059    Answers: 1   Comments: 0

Prove that Σ(x_i −x^− )=0

$${Prove}\:{that}\:\Sigma\left({x}_{{i}} −\overset{−} {{x}}\right)=\mathrm{0} \\ $$

Question Number 38058    Answers: 3   Comments: 0

∫((tan x)/(a+btan^2 x)) dx = ?

$$\int\frac{\mathrm{tan}\:{x}}{{a}+{b}\mathrm{tan}\:^{\mathrm{2}} {x}}\:{dx}\:\:=\:? \\ $$

Question Number 38057    Answers: 1   Comments: 0

∫((cos 5x+cos 4x)/(1−2cos 3x))dx = ?

$$\int\frac{\mathrm{cos}\:\mathrm{5}{x}+\mathrm{cos}\:\mathrm{4}{x}}{\mathrm{1}−\mathrm{2cos}\:\mathrm{3}{x}}{dx}\:\:=\:? \\ $$

Question Number 38051    Answers: 0   Comments: 0

A manufactual plans to build two types of tables. For table A,the cost of material is 20 000 bucks, the number of man hours needed to complete it is 10, and the profit is 15 000 bucks. Table B requires materials costing 12000 bucks,15 man hour of labour and makes same profit as table A. The total money avialable for materials is 500 000 bucks and labour avialable is 330 man hours.Find the maximum profit that can be made and the number of each type of table that should be made to produces it.

$${A}\:{manufactual}\:{plans}\:{to}\:{build}\:{two} \\ $$$${types}\:{of}\:{tables}.\:{For}\:{table}\:{A},{the}\:{cost} \\ $$$${of}\:{material}\:{is}\:\mathrm{20}\:\mathrm{000}\:{bucks},\:{the}\: \\ $$$${number}\:{of}\:{man}\:{hours}\:{needed}\:{to}\: \\ $$$${complete}\:{it}\:{is}\:\mathrm{10},\:{and}\:{the}\:{profit}\: \\ $$$${is}\:\mathrm{15}\:\mathrm{000}\:{bucks}.\:{Table}\:{B}\:{requires} \\ $$$${materials}\:{costing}\:\mathrm{12000}\:{bucks},\mathrm{15} \\ $$$${man}\:{hour}\:{of}\:{labour}\:{and}\:{makes} \\ $$$${same}\:{profit}\:{as}\:{table}\:{A}. \\ $$$$\:\:{The}\:{total}\:{money}\:{avialable}\:{for}\:{materials} \\ $$$${is}\:\mathrm{500}\:\mathrm{000}\:{bucks}\:{and}\:{labour}\:{avialable} \\ $$$${is}\:\mathrm{330}\:{man}\:{hours}.{Find}\:{the}\:{maximum} \\ $$$${profit}\:{that}\:{can}\:{be}\:{made}\:{and}\:{the}\:{number}\:{of}\:{each} \\ $$$${type}\:{of}\:{table}\:{that}\:{should}\:{be}\:{made}\:{to}\:{produces} \\ $$$${it}. \\ $$

Question Number 38049    Answers: 1   Comments: 0

Find the equation of the two lines throught (2,−3) which makes 45° with the line 2x − y = 2..hence find the cosine of the acute between the lines l_1 : y− 2x + 5=0 and l_2 : y − x + 6 (leave your answer in surd form)

$${Find}\:{the}\:{equation}\:{of}\:{the}\:{two}\:{lines} \\ $$$${throught}\:\left(\mathrm{2},−\mathrm{3}\right)\:{which}\:{makes}\:\mathrm{45}° \\ $$$${with}\:{the}\:{line}\:\mathrm{2}{x}\:−\:{y}\:=\:\mathrm{2}..{hence} \\ $$$${find}\:{the}\:{cosine}\:{of}\:{the}\:{acute}\:{between} \\ $$$${the}\:{lines}\:{l}_{\mathrm{1}} :\:{y}−\:\mathrm{2}{x}\:+\:\mathrm{5}=\mathrm{0}\:{and}\: \\ $$$${l}_{\mathrm{2}} :\:{y}\:−\:{x}\:+\:\mathrm{6}\:\left({leave}\:{your}\:{answer}\:{in}\right. \\ $$$$\left.{surd}\:{form}\right) \\ $$

Question Number 38044    Answers: 2   Comments: 1

Question Number 38032    Answers: 1   Comments: 1

Question Number 38025    Answers: 1   Comments: 0

An AP has 41 terms.The sum of the first five terms of this AP is 35 and the sum of the last five terms of the same AP is 395. find the common difference and the first term.

$$\boldsymbol{\mathrm{An}}\:\boldsymbol{\mathrm{AP}}\:\boldsymbol{\mathrm{has}}\:\mathrm{41}\:\boldsymbol{\mathrm{terms}}.\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{first}}\:\boldsymbol{\mathrm{five}} \\ $$$$\boldsymbol{\mathrm{terms}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{AP}}\:\boldsymbol{\mathrm{is}}\:\mathrm{35}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{sum}} \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{last}}\:\boldsymbol{\mathrm{five}}\:\boldsymbol{\mathrm{terms}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{same}}\:\boldsymbol{\mathrm{AP}}\:\boldsymbol{\mathrm{is}}\:\mathrm{395}. \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{common}}\:\boldsymbol{\mathrm{difference}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{first}}\:\boldsymbol{\mathrm{term}}. \\ $$

Question Number 38024    Answers: 1   Comments: 0

Question Number 38015    Answers: 0   Comments: 6

Question Number 38012    Answers: 3   Comments: 1

The roots of the equation 2x^2 − x + 3 = 0 are α and β if the roots of 3x^2 + px + q=0 are α + (1/α) and β + (1/(β )) find the value of p and q.

$${The}\:{roots}\:{of}\:{the}\:{equation} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} \:−\:{x}\:+\:\mathrm{3}\:=\:\mathrm{0}\:{are}\:\alpha\:{and}\:\beta \\ $$$${if}\:{the}\:{roots}\:{of}\:\mathrm{3}{x}^{\mathrm{2}} \:+\:{px}\:+\:{q}=\mathrm{0}\: \\ $$$${are}\:\alpha\:+\:\frac{\mathrm{1}}{\alpha}\:{and}\:\beta\:+\:\frac{\mathrm{1}}{\beta\:}\:{find}\:{the}\:{value} \\ $$$${of}\:{p}\:{and}\:{q}. \\ $$$$\: \\ $$

Question Number 38011    Answers: 2   Comments: 0

Show that ((sin2A)/(1+ cos2A)) = TanA

$${Show}\:{that}\: \\ $$$$\:\:\frac{{sin}\mathrm{2}{A}}{\mathrm{1}+\:{cos}\mathrm{2}{A}}\:=\:{TanA} \\ $$

Question Number 38006    Answers: 1   Comments: 5

Question Number 37972    Answers: 1   Comments: 0

The distance S metres is given as a funtion f(t) where is time taken... if S = t^3 + t^2 + 4 find the velocity and acceleration

$$\:{The}\:{distance}\:{S}\:{metres}\:{is}\: \\ $$$${given}\:{as}\:{a}\:{funtion}\: \\ $$$${f}\left({t}\right)\:{where}\:{is}\:{time}\:{taken}... \\ $$$${if}\:{S}\:=\:{t}^{\mathrm{3}} \:+\:{t}^{\mathrm{2}} \:+\:\mathrm{4} \\ $$$${find}\:{the}\:{velocity}\:{and}\:{acceleration} \\ $$

Question Number 37991    Answers: 1   Comments: 4

1. Find the sum s_n =1+2x+3x^2 +4x^3 +...+nx^(n−1) Hence,or otherwise, find the sum Σ_(k=1) ^n k.2^k 2. Simplify the following i. Σ_(r=0) ^n (_(2r−1) ^(2n) ) ii.Σ_(r=0) ^n (−1)^r r(_r ^n ) iii.Σ_(r=0) ^n (−1)^r (1/(r+1))(_r ^n ) iv.Σ_(r=0) ^n (_(2r) ^(2n) ) v.Σ_(r=0) ^n (−1)^r (_(n−r) ^(n+1) ) 3.Find the sum Σ_(r=0) ^(n−k) (_k ^(n−r) ), where k=0,1,2,3,...,n

$$\mathrm{1}.\:{Find}\:{the}\:{sum} \\ $$$$\:\:\:\:{s}_{{n}} =\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{3}} +...+{nx}^{{n}−\mathrm{1}} \\ $$$${Hence},{or}\:{otherwise},\:{find}\:{the}\:{sum} \\ $$$$\:\:\:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}.\mathrm{2}^{{k}} \\ $$$$\mathrm{2}.\:{Simplify}\:{the}\:{following} \\ $$$${i}.\:\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\left(_{\mathrm{2}{r}−\mathrm{1}} ^{\mathrm{2}{n}} \right) \\ $$$${ii}.\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{r}} {r}\left(_{{r}} ^{{n}} \right) \\ $$$${iii}.\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{r}} \frac{\mathrm{1}}{{r}+\mathrm{1}}\left(_{{r}} ^{{n}} \right) \\ $$$${iv}.\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\left(_{\mathrm{2}{r}} ^{\mathrm{2}{n}} \right) \\ $$$${v}.\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{r}} \left(_{{n}−{r}} ^{{n}+\mathrm{1}} \right) \\ $$$$\mathrm{3}.{Find}\:{the}\:{sum} \\ $$$$\:\:\:\:\:\:\:\:\:\underset{{r}=\mathrm{0}} {\overset{{n}−{k}} {\sum}}\left(_{{k}} ^{{n}−{r}} \right),\:\:\:{where}\:{k}=\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},...,{n} \\ $$

Question Number 37989    Answers: 2   Comments: 7

Question Number 37964    Answers: 1   Comments: 0

Question Number 37961    Answers: 1   Comments: 0

calculate ∫_0 ^∞ (dx/(x^(2 ) +(√(1+x^2 )))) .

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}\:} \:+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:. \\ $$

Question Number 37957    Answers: 0   Comments: 0

Question Number 37953    Answers: 0   Comments: 1

Question Number 37948    Answers: 0   Comments: 1

If x ∈R show that (2+i)e^((1+3i)) +(2−i)e^((1−3i)) is also real.

$${If}\:{x}\:\in\mathbb{R} \\ $$$${show}\:{that}\:\left(\mathrm{2}+{i}\right){e}^{\left(\mathrm{1}+\mathrm{3}{i}\right)} +\left(\mathrm{2}−{i}\right){e}^{\left(\mathrm{1}−\mathrm{3}{i}\right)} \:{is}\:{also}\:{real}. \\ $$

Question Number 37940    Answers: 1   Comments: 0

Which of the following expressions are positive for all real values of x? a) x^2 − 2x + 5 b) x^2 −2x−1 c) x^2 +4x+2 d) 2x^2 −6x + 5

$${Which}\:{of}\:{the}\:{following}\: \\ $$$${expressions}\:{are}\:{positive}\:{for} \\ $$$${all}\:{real}\:{values}\:{of}\:\:{x}? \\ $$$$\left.{a}\left.\right)\:{x}^{\mathrm{2}} −\:\mathrm{2}{x}\:+\:\mathrm{5}\:\:\:{b}\right)\:{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{1}\: \\ $$$$\left.{c}\left.\right)\:{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{2}\:\:\:\:\:\:{d}\right)\:\mathrm{2}{x}^{\mathrm{2}} −\mathrm{6}{x}\:+\:\mathrm{5} \\ $$

Question Number 37938    Answers: 5   Comments: 5

Question Number 37945    Answers: 0   Comments: 10

Two plane mirrors are inclined at an angle of 30°.A ray of light which makes an angle of incidence of 50° with one of the mirrors,undergoes two successive reflections at the mirrors.Calculate the angle of deviation. please help....its urgent

$${Two}\:{plane}\:{mirrors}\:{are}\:{inclined}\:{at} \\ $$$${an}\:{angle}\:{of}\:\mathrm{30}°.{A}\:{ray}\:{of}\:{light}\:{which} \\ $$$${makes}\:{an}\:{angle}\:{of}\:{incidence}\:{of}\:\mathrm{50}° \\ $$$${with}\:{one}\:{of}\:{the}\:{mirrors},{undergoes} \\ $$$${two}\:{successive}\:{reflections}\:{at}\:{the} \\ $$$${mirrors}.{Calculate}\:{the}\:{angle}\:{of} \\ $$$${deviation}. \\ $$$$ \\ $$$$ \\ $$$${please}\:{help}....{its}\:{urgent} \\ $$

Question Number 37930    Answers: 1   Comments: 1

n∈N U_(n+1) =((1/2))^(n+1) +U_n U_n =?

$${n}\in\mathbb{N} \\ $$$${U}_{{n}+\mathrm{1}} =\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}+\mathrm{1}} +{U}_{{n}} \\ $$$${U}_{{n}} =? \\ $$

Question Number 37922    Answers: 1   Comments: 2

f : N → R g : N → R f(n)=∫_0 ^(2π) x^n sin x dx g(n)=∫_0 ^(2π) x^n cos x dx ((f(n+1)−f(n))/(g(n+1)−g(n)))=?

$${f}\::\:\mathbb{N}\:\rightarrow\:\mathbb{R} \\ $$$${g}\::\:\mathbb{N}\:\rightarrow\:\mathbb{R} \\ $$$${f}\left({n}\right)=\int_{\mathrm{0}} ^{\mathrm{2}\pi} {x}^{{n}} \mathrm{sin}\:{x}\:{dx} \\ $$$${g}\left({n}\right)=\int_{\mathrm{0}} ^{\mathrm{2}\pi} {x}^{{n}} \mathrm{cos}\:{x}\:{dx} \\ $$$$\frac{{f}\left({n}+\mathrm{1}\right)−{f}\left({n}\right)}{{g}\left({n}+\mathrm{1}\right)−{g}\left({n}\right)}=? \\ $$

  Pg 1670      Pg 1671      Pg 1672      Pg 1673      Pg 1674      Pg 1675      Pg 1676      Pg 1677      Pg 1678      Pg 1679   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com