Question and Answers Forum |
AllQuestion and Answers: Page 1674 |
let f(x)= ∫_0 ^1 (e^(−(1+t^2 )x) /(1+t^2 )) dt find a simple form of f(x) |
![]() |
if xsin^3 θ + ycos^3 θ=sinθcosθ and xsinθ −ycosθ=0 prove that x^2 + y^2 =1 |
show that 2tan^(−1) 2 + tan^(−1) 3= Π +tan^(−1) (1/3) |
show that 2tan^(−1) 2 + tan^(−1) 3= Π +tan^(−1) (1/3) |
![]() |
calculate A(α) = ∫_0 ^1 ln(1+αix)dx 2) calculate ∫_0 ^1 ln(1+ix) dx (i^2 =−1) |
let f(x)=ln(1+ix) with ∣x∣<1 1) extract Re(f(x)) and Im(f(x)) 2) developp f(x) at integr serie. |
let f(α) = ∫_(−∞) ^(+∞) ((arctan(1+αxi))/(1+x^2 ))dx find f(α) . |
let z∈C developp at integrserie f(z)=ln(1+z) with ∣z∣<1 . 2) give ln(2+i) at form of serie. |
![]() |
decompose inside R(x) the fraction F(x)= (x^2 /((x+1)^5 ( x+3)^8 )) |
![]() |
let p∈C[x] degp=n (x_i )_(1≤k≤n) the roots of p(x) a∈C?/p(a)≠0 1) calculate S_1 = Σ_(k=1) ^n (1/(x_k −a)) interms of p,p^′ and a 2)calculste S_2 =Σ_(k=1) ^n (1/((x_k −a)^2 )) interms of p,p^, p^(′′) and a. |
let give p(x)=(x+1)^n −(x−1)^n 1) factorize p(x) inside C[x] 2) find the value of Π_(k=1) ^p cotan(((kπ)/(2p+1))) |
decompose inside R(x) thefraction F(x)= ((x^5 +1)/(x^2^ (x−1)^2 )) . |
let p(x)= x^n +x+1 ∈C[x] and z∈C/p(z)=0 prove that ∣z∣<2 . |
prove that ∀ p∈K[x] p(x) −x divide p(p(x))−x |
simplify Σ_(k=0) ^n ((k/n) −α)^2 C_n ^k x^k (1−x)^(n−k ) α∈C. |
1) prove that Σ_(k=1) ^n H_k =(n+1)H_n −n 2) prove that Σ_(k=1) ^n H_k ^2 =(n+1)H_n ^2 −(3n+1)H_n +2n H_n =Σ_(k=1) ^n (1/k) . |
simplify Σ_(k=1) ^n (((−1)^(k−1) )/k) C_n ^k |
prove that Σ_(k=0) ^p (−1)^k C_n ^k =(−1)^p C_(n−1) ^p |
1) calculate ∫_(−∞) ^(+∞) ((cos(αx^n ))/(x^2 +x +1)) dx with n integr natural 2) find the value of ∫_(−∞) ^∞ ((cos( α x^(2n) ))/(x^2 +x +1))dx 3) calculate ∫_(−∞) ^(+∞) ((cos(π x^3 ))/(x^2 +x +1)) dx |
![]() |
![]() |
A machine with a velocity ratio of 5 requires 150J of work to raise a 500N load through a vertical distance of 200cm,calculate: a)the efficiency b)the M.A of the machine |
Pg 1669 Pg 1670 Pg 1671 Pg 1672 Pg 1673 Pg 1674 Pg 1675 Pg 1676 Pg 1677 Pg 1678 |