Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1674

Question Number 34661    Answers: 0   Comments: 0

let f(x)= ∫_0 ^1 (e^(−(1+t^2 )x) /(1+t^2 )) dt find a simple form of f(x)

letf(x)=01e(1+t2)x1+t2dtfindasimpleformoff(x)

Question Number 34653    Answers: 0   Comments: 0

Question Number 34647    Answers: 2   Comments: 0

if xsin^3 θ + ycos^3 θ=sinθcosθ and xsinθ −ycosθ=0 prove that x^2 + y^2 =1

ifxsin3θ+ycos3θ=sinθcosθandxsinθycosθ=0provethatx2+y2=1

Question Number 34646    Answers: 1   Comments: 0

show that 2tan^(−1) 2 + tan^(−1) 3= Π +tan^(−1) (1/3)

showthat2tan12+tan13=Π+tan113

Question Number 34645    Answers: 0   Comments: 0

show that 2tan^(−1) 2 + tan^(−1) 3= Π +tan^(−1) (1/3)

showthat2tan12+tan13=Π+tan113

Question Number 34639    Answers: 2   Comments: 0

Question Number 34635    Answers: 2   Comments: 4

calculate A(α) = ∫_0 ^1 ln(1+αix)dx 2) calculate ∫_0 ^1 ln(1+ix) dx (i^2 =−1)

calculateA(α)=01ln(1+αix)dx2)calculate01ln(1+ix)dx(i2=1)

Question Number 34634    Answers: 1   Comments: 1

let f(x)=ln(1+ix) with ∣x∣<1 1) extract Re(f(x)) and Im(f(x)) 2) developp f(x) at integr serie.

letf(x)=ln(1+ix)withx∣<11)extractRe(f(x))andIm(f(x))2)developpf(x)atintegrserie.

Question Number 34633    Answers: 0   Comments: 0

let f(α) = ∫_(−∞) ^(+∞) ((arctan(1+αxi))/(1+x^2 ))dx find f(α) .

letf(α)=+arctan(1+αxi)1+x2dxfindf(α).

Question Number 34632    Answers: 0   Comments: 0

let z∈C developp at integrserie f(z)=ln(1+z) with ∣z∣<1 . 2) give ln(2+i) at form of serie.

letzCdeveloppatintegrserief(z)=ln(1+z)withz∣<1.2)giveln(2+i)atformofserie.

Question Number 34617    Answers: 2   Comments: 2

Question Number 34615    Answers: 0   Comments: 0

decompose inside R(x) the fraction F(x)= (x^2 /((x+1)^5 ( x+3)^8 ))

decomposeinsideR(x)thefractionF(x)=x2(x+1)5(x+3)8

Question Number 34608    Answers: 0   Comments: 0

Question Number 34607    Answers: 0   Comments: 0

let p∈C[x] degp=n (x_i )_(1≤k≤n) the roots of p(x) a∈C?/p(a)≠0 1) calculate S_1 = Σ_(k=1) ^n (1/(x_k −a)) interms of p,p^′ and a 2)calculste S_2 =Σ_(k=1) ^n (1/((x_k −a)^2 )) interms of p,p^, p^(′′) and a.

letpC[x]degp=n(xi)1kntherootsofp(x)aC?/p(a)01)calculateS1=k=1n1xkaintermsofp,panda2)calculsteS2=k=1n1(xka)2intermsofp,p,panda.

Question Number 34606    Answers: 0   Comments: 0

let give p(x)=(x+1)^n −(x−1)^n 1) factorize p(x) inside C[x] 2) find the value of Π_(k=1) ^p cotan(((kπ)/(2p+1)))

letgivep(x)=(x+1)n(x1)n1)factorizep(x)insideC[x]2)findthevalueofk=1pcotan(kπ2p+1)

Question Number 34605    Answers: 0   Comments: 0

decompose inside R(x) thefraction F(x)= ((x^5 +1)/(x^2^ (x−1)^2 )) .

decomposeinsideR(x)thefractionF(x)=x5+1x2(x1)2.

Question Number 34604    Answers: 0   Comments: 0

let p(x)= x^n +x+1 ∈C[x] and z∈C/p(z)=0 prove that ∣z∣<2 .

letp(x)=xn+x+1C[x]andzC/p(z)=0provethatz∣<2.

Question Number 34603    Answers: 0   Comments: 0

prove that ∀ p∈K[x] p(x) −x divide p(p(x))−x

provethatpK[x]p(x)xdividep(p(x))x

Question Number 34602    Answers: 0   Comments: 0

simplify Σ_(k=0) ^n ((k/n) −α)^2 C_n ^k x^k (1−x)^(n−k ) α∈C.

simplifyk=0n(knα)2Cnkxk(1x)nkαC.

Question Number 34596    Answers: 0   Comments: 0

1) prove that Σ_(k=1) ^n H_k =(n+1)H_n −n 2) prove that Σ_(k=1) ^n H_k ^2 =(n+1)H_n ^2 −(3n+1)H_n +2n H_n =Σ_(k=1) ^n (1/k) .

1)provethatk=1nHk=(n+1)Hnn2)provethatk=1nHk2=(n+1)Hn2(3n+1)Hn+2nHn=k=1n1k.

Question Number 34595    Answers: 0   Comments: 0

simplify Σ_(k=1) ^n (((−1)^(k−1) )/k) C_n ^k

simplifyk=1n(1)k1kCnk

Question Number 34594    Answers: 0   Comments: 0

prove that Σ_(k=0) ^p (−1)^k C_n ^k =(−1)^p C_(n−1) ^p

provethatk=0p(1)kCnk=(1)pCn1p

Question Number 34593    Answers: 0   Comments: 0

1) calculate ∫_(−∞) ^(+∞) ((cos(αx^n ))/(x^2 +x +1)) dx with n integr natural 2) find the value of ∫_(−∞) ^∞ ((cos( α x^(2n) ))/(x^2 +x +1))dx 3) calculate ∫_(−∞) ^(+∞) ((cos(π x^3 ))/(x^2 +x +1)) dx

1)calculate+cos(αxn)x2+x+1dxwithnintegrnatural2)findthevalueofcos(αx2n)x2+x+1dx3)calculate+cos(πx3)x2+x+1dx

Question Number 34587    Answers: 2   Comments: 1

Question Number 34585    Answers: 1   Comments: 1

Question Number 34571    Answers: 0   Comments: 0

A machine with a velocity ratio of 5 requires 150J of work to raise a 500N load through a vertical distance of 200cm,calculate: a)the efficiency b)the M.A of the machine

Amachinewithavelocityratioof5requires150Jofworktoraisea500Nloadthroughaverticaldistanceof200cm,calculate:a)theefficiencyb)theM.Aofthemachine

  Pg 1669      Pg 1670      Pg 1671      Pg 1672      Pg 1673      Pg 1674      Pg 1675      Pg 1676      Pg 1677      Pg 1678   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com