Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1673

Question Number 34688    Answers: 0   Comments: 1

cslculate Σ_(n=2) ^∞ ln(1+(((−1)^n )/n))

cslculaten=2ln(1+(1)nn)

Question Number 34687    Answers: 0   Comments: 0

calculate Σ_(n=2) ^∞ ((1/(√(n−1))) + (1/(√(n+1))) −(2/(√n)))

calculaten=2(1n1+1n+12n)

Question Number 34686    Answers: 0   Comments: 0

decompose F(x) = (((2n)!)/((x^2 −1)(x^2 −2)....(x^2 −n)))

decomposeF(x)=(2n)!(x21)(x22)....(x2n)

Question Number 34685    Answers: 0   Comments: 0

decompose the fraction F(x)= (1/((x+2)( x^n −1))) with n ∈ N^★

decomposethefractionF(x)=1(x+2)(xn1)withnN

Question Number 34684    Answers: 0   Comments: 0

let U_n = (π/4) −Σ_(k=0) ^n (((−1)^k )/(2k+1)) calcilate Σ_(n=0) ^∞ U_n

letUn=π4k=0n(1)k2k+1calcilaten=0Un

Question Number 34683    Answers: 0   Comments: 0

find?the nature of Σ_(n=0) ^∞ sin{π(2+(√3) )^n }

find?thenatureofn=0sin{π(2+3)n}

Question Number 34682    Answers: 0   Comments: 0

calculate Σ_(n=0) ^∞ ln(cos((a/2^n )))

calculaten=0ln(cos(a2n))

Question Number 34681    Answers: 0   Comments: 0

calculate lim_(x→0) { ((1+tanx)/(1+thx))}^(1/(sinx)) .

calculatelimx0{1+tanx1+thx}1sinx.

Question Number 34680    Answers: 0   Comments: 0

decompose inside C(x) the fraction F(x) = (x^2 /(x^4 −2x^2 cos(2a) +1)) .

decomposeinsideC(x)thefractionF(x)=x2x42x2cos(2a)+1.

Question Number 34679    Answers: 0   Comments: 0

let f(x) = (x/(4x^2 −1)) 1) find f^((n)) (x) and f^((n)) (0) 2) developp f at ontegr serie .

letf(x)=x4x211)findf(n)(x)andf(n)(0)2)developpfatontegrserie.

Question Number 34678    Answers: 0   Comments: 0

prove that ∀ n≥3 (√n) <^n (√(n!))

provethatn3n<nn!

Question Number 34677    Answers: 0   Comments: 0

prove that Σ_(k=0) ^(n−1) [x +(k/n)] =[nx] ∀ n∈ ∈N^★

provethatk=0n1[x+kn]=[nx]nN

Question Number 34676    Answers: 0   Comments: 0

prove that Σ_(k=0) ^(2n−1) (((−1)^k )/(k+1)) =Σ_(k=n+1) ^(2n) (1/k)

provethatk=02n1(1)kk+1=k=n+12n1k

Question Number 34675    Answers: 0   Comments: 0

provethat e = Σ_(k=0) ^n (1/(k!)) +∫_0 ^1 (((1−t)^n )/(n!)) e^t dt .

provethate=k=0n1k!+01(1t)nn!etdt.

Question Number 34674    Answers: 0   Comments: 0

find ∫_0 ^π ((x sinx)/(1+cos^2 x)) dx

find0πxsinx1+cos2xdx

Question Number 34673    Answers: 0   Comments: 0

solve (((1+iz)/(1−iz)))^n = ((1+itanα)/(1−itanα)) with −(π/2)<α<(π/2)

solve(1+iz1iz)n=1+itanα1itanαwithπ2<α<π2

Question Number 34672    Answers: 0   Comments: 0

prove that ∀n∈N ∣sin(nx)∣≤n∣sinx∣ .

provethatnNsin(nx)∣⩽nsinx.

Question Number 34671    Answers: 0   Comments: 0

calculste Σ_(n=1) ^∞ arctan((2/n^2 )).

calculsten=1arctan(2n2).

Question Number 34669    Answers: 0   Comments: 1

let P(x)=(1+x+ix^2 )^n −(1+x −ix^2 )^n 1) find the roots of P(x) 2) factorize inside C[x] P(x) 3) factorize indide R[x] P(x).

letP(x)=(1+x+ix2)n(1+xix2)n1)findtherootsofP(x)2)factorizeinsideC[x]P(x)3)factorizeindideR[x]P(x).

Question Number 34668    Answers: 0   Comments: 0

find the roots of?p(x) = x^(2n) −2x^n cos(nθ) +1 2)?factorize p(x)

findtherootsof?p(x)=x2n2xncos(nθ)+12)?factorizep(x)

Question Number 34667    Answers: 0   Comments: 0

solve (x+1)^n = e^(2ina) then find the value of P_n = Π_(k=0) ^(n−1) sin(a +((kπ)/n))

solve(x+1)n=e2inathenfindthevalueofPn=k=0n1sin(a+kπn)

Question Number 34666    Answers: 0   Comments: 0

simplify sin^2 ( ((arccosx)/2))

simplifysin2(arccosx2)

Question Number 34665    Answers: 0   Comments: 0

simplify sin (2arcsinx)

simplifysin(2arcsinx)

Question Number 34664    Answers: 0   Comments: 0

simplify g(x)= arctan((1/(2x^2 ))) −arctan((x/(x+1))) +arctan(((x−1)/x))

simplifyg(x)=arctan(12x2)arctan(xx+1)+arctan(x1x)

Question Number 34663    Answers: 0   Comments: 0

simplify f(x)=arcsin((√(1−x^2 ))) −arctan((√((1−x)/(1+x))))

simplifyf(x)=arcsin(1x2)arctan(1x1+x)

Question Number 34662    Answers: 0   Comments: 0

calculate I(a) =∫_(1/a) ^a ((ln(x))/(1+x^2 )) dx with a>0 2) calculate ∫_0 ^(+∞) ((ln(x))/(1+x^2 )) dx .

calculateI(a)=1aaln(x)1+x2dxwitha>02)calculate0+ln(x)1+x2dx.

  Pg 1668      Pg 1669      Pg 1670      Pg 1671      Pg 1672      Pg 1673      Pg 1674      Pg 1675      Pg 1676      Pg 1677   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com