Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1673
Question Number 34678 Answers: 0 Comments: 0
$${prove}\:{that}\:\forall\:{n}\geqslant\mathrm{3}\:\:\:\:\:\sqrt{{n}}\:\:<^{{n}} \sqrt{{n}!} \\ $$$$ \\ $$
Question Number 34677 Answers: 0 Comments: 0
$${prove}\:{that}\:\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\left[{x}\:+\frac{{k}}{{n}}\right]\:=\left[{nx}\right]\:\:\forall\:{n}\in\:\in{N}^{\bigstar} \\ $$
Question Number 34676 Answers: 0 Comments: 0
$${prove}\:{that}\:\:\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}−\mathrm{1}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}+\mathrm{1}}\:=\sum_{{k}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \:\:\frac{\mathrm{1}}{{k}} \\ $$
Question Number 34675 Answers: 0 Comments: 0
$${provethat}\:{e}\:=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\:\:+\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\left(\mathrm{1}−{t}\right)^{{n}} }{{n}!}\:{e}^{{t}} \:{dt}\:. \\ $$
Question Number 34674 Answers: 0 Comments: 0
$${find}\:\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{x}\:{sinx}}{\mathrm{1}+{cos}^{\mathrm{2}} {x}}\:{dx} \\ $$
Question Number 34673 Answers: 0 Comments: 0
$${solve}\:\left(\frac{\mathrm{1}+{iz}}{\mathrm{1}−{iz}}\right)^{{n}} \:=\:\frac{\mathrm{1}+{itan}\alpha}{\mathrm{1}−{itan}\alpha}\:\:{with}\:−\frac{\pi}{\mathrm{2}}<\alpha<\frac{\pi}{\mathrm{2}} \\ $$
Question Number 34672 Answers: 0 Comments: 0
$${prove}\:{that}\:\forall{n}\in{N}\:\:\:\mid{sin}\left({nx}\right)\mid\leqslant{n}\mid{sinx}\mid\:. \\ $$
Question Number 34671 Answers: 0 Comments: 0
$${calculste}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:{arctan}\left(\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\right). \\ $$
Question Number 34669 Answers: 0 Comments: 1
$${let}\:{P}\left({x}\right)=\left(\mathrm{1}+{x}+{ix}^{\mathrm{2}} \right)^{{n}} \:−\left(\mathrm{1}+{x}\:−{ix}^{\mathrm{2}} \right)^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{inside}\:{C}\left[{x}\right]\:{P}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{factorize}\:{indide}\:{R}\left[{x}\right]\:{P}\left({x}\right). \\ $$
Question Number 34668 Answers: 0 Comments: 0
$${find}\:{the}\:{roots}\:{of}?{p}\left({x}\right)\:=\:{x}^{\mathrm{2}{n}} \:−\mathrm{2}{x}^{{n}} \:{cos}\left({n}\theta\right)\:+\mathrm{1} \\ $$$$\left.\mathrm{2}\right)?{factorize}\:{p}\left({x}\right)\: \\ $$
Question Number 34667 Answers: 0 Comments: 0
$${solve}\:\:\left({x}+\mathrm{1}\right)^{{n}} \:=\:{e}^{\mathrm{2}{ina}} \:\:\:{then}\:{find}\:{the}\:{value}\:{of} \\ $$$${P}_{{n}} =\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{sin}\left({a}\:+\frac{{k}\pi}{{n}}\right) \\ $$
Question Number 34666 Answers: 0 Comments: 0
$${simplify}\:{sin}^{\mathrm{2}} \left(\:\frac{{arccosx}}{\mathrm{2}}\right) \\ $$
Question Number 34665 Answers: 0 Comments: 0
$${simplify}\:\:{sin}\:\left(\mathrm{2}{arcsinx}\right) \\ $$
Question Number 34664 Answers: 0 Comments: 0
$${simplify} \\ $$$${g}\left({x}\right)=\:{arctan}\left(\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\right)\:−{arctan}\left(\frac{{x}}{{x}+\mathrm{1}}\right)\:+{arctan}\left(\frac{{x}−\mathrm{1}}{{x}}\right) \\ $$
Question Number 34663 Answers: 0 Comments: 0
$${simplify}\: \\ $$$${f}\left({x}\right)={arcsin}\left(\sqrt{\left.\mathrm{1}−{x}^{\mathrm{2}} \right)}\:\:−{arctan}\left(\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}\right)\right. \\ $$
Question Number 34662 Answers: 0 Comments: 0
$${calculate}\:{I}\left({a}\right)\:\:=\int_{\frac{\mathrm{1}}{{a}}} ^{{a}} \:\:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:. \\ $$
Question Number 34661 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{e}^{−\left(\mathrm{1}+{t}^{\mathrm{2}} \right){x}} }{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:{find}\:{a}\:{simple}\:{form}\:{of} \\ $$$${f}\left({x}\right) \\ $$
Question Number 34653 Answers: 0 Comments: 0
Question Number 34647 Answers: 2 Comments: 0
$${if}\:\:\:{xsin}^{\mathrm{3}} \theta\:+\:{ycos}^{\mathrm{3}} \theta={sin}\theta{cos}\theta \\ $$$${and}\:{xsin}\theta\:−{ycos}\theta=\mathrm{0} \\ $$$${prove}\:{that}\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} =\mathrm{1} \\ $$
Question Number 34646 Answers: 1 Comments: 0
$${show}\:{that}\:\mathrm{2}{tan}^{−\mathrm{1}} \mathrm{2}\:+\:{tan}^{−\mathrm{1}} \mathrm{3}= \\ $$$$\Pi\:+{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}} \\ $$
Question Number 34645 Answers: 0 Comments: 0
Question Number 34639 Answers: 2 Comments: 0
Question Number 34635 Answers: 2 Comments: 4
$${calculate}\:{A}\left(\alpha\right)\:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+\alpha{ix}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+{ix}\right)\:{dx}\:\:\:\:\left({i}^{\mathrm{2}} \:=−\mathrm{1}\right) \\ $$
Question Number 34634 Answers: 1 Comments: 1
$${let}\:{f}\left({x}\right)={ln}\left(\mathrm{1}+{ix}\right)\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{extract}\:{Re}\left({f}\left({x}\right)\right)\:{and}\:{Im}\left({f}\left({x}\right)\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\left({x}\right)\:{at}\:{integr}\:{serie}. \\ $$
Question Number 34633 Answers: 0 Comments: 0
$${let}\:{f}\left(\alpha\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\frac{{arctan}\left(\mathrm{1}+\alpha{xi}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$${find}\:{f}\left(\alpha\right)\:. \\ $$
Question Number 34632 Answers: 0 Comments: 0
$${let}\:{z}\in{C}\:\:{developp}\:{at}\:{integrserie} \\ $$$${f}\left({z}\right)={ln}\left(\mathrm{1}+{z}\right)\:\:{with}\:\mid{z}\mid<\mathrm{1}\:. \\ $$$$\left.\mathrm{2}\right)\:{give}\:{ln}\left(\mathrm{2}+{i}\right)\:{at}\:{form}\:{of}\:{serie}. \\ $$
Pg 1668 Pg 1669 Pg 1670 Pg 1671 Pg 1672 Pg 1673 Pg 1674 Pg 1675 Pg 1676 Pg 1677
Terms of Service
Privacy Policy
Contact: info@tinkutara.com