Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1673

Question Number 32635    Answers: 0   Comments: 1

Question Number 32633    Answers: 0   Comments: 1

Question Number 32632    Answers: 0   Comments: 2

Question Number 32629    Answers: 1   Comments: 0

If x^2 +y^2 =9 , 4a^2 +9b^2 =16, then maximum value of 4a^2 x^2 +9b^2 y^2 −12abxy is ?

$$\boldsymbol{{I}}{f}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{9}\:,\:\mathrm{4}{a}^{\mathrm{2}} +\mathrm{9}{b}^{\mathrm{2}} =\mathrm{16}, \\ $$$${then}\:\boldsymbol{{maximum}}\:{value}\:{of}\: \\ $$$$\mathrm{4}{a}^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{9}{b}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{12}{abxy}\:{is}\:? \\ $$

Question Number 32627    Answers: 0   Comments: 1

plzz help ne differentiate between ∫sin(2x)= −(1/2)cox(2x)+c is not change to ∫2sin(x)cos(x) but ∫_b ^a sin(2x)= is change to ∫_b ^a 2sin(x)cos(x)

$${plzz}\:{help}\:{ne}\:{differentiate}\: \\ $$$${between} \\ $$$$\int{sin}\left(\mathrm{2}{x}\right)=\:−\frac{\mathrm{1}}{\mathrm{2}}{cox}\left(\mathrm{2}{x}\right)+{c}\: \\ $$$${is}\:{not}\:{change}\:{to}\:\int\mathrm{2}{sin}\left({x}\right){cos}\left({x}\right) \\ $$$${but}\:\underset{{b}} {\overset{{a}} {\int}}{sin}\left(\mathrm{2}{x}\right)=\:{is}\:{change}\:{to} \\ $$$$\underset{{b}} {\overset{{a}} {\int}}\mathrm{2}{sin}\left({x}\right){cos}\left({x}\right) \\ $$

Question Number 32610    Answers: 0   Comments: 1

2. Find the number of ordered triples (a, b, c) of integers satisfying 0 ≤ a, b, c ≤ 1000 for which a^3 + b^3 + c^3 ≡ 3abc + 1 (mod 1001)

$$\mathrm{2}.\:\:{Find}\:\:{the}\:\:{number}\:\:{of}\:\:{ordered}\:\:{triples}\:\:\left({a},\:{b},\:{c}\right)\:\:{of}\:\:{integers}\:\:{satisfying}\:\:\:\:\mathrm{0}\:\leqslant\:\:{a},\:{b},\:{c}\:\:\leqslant\:\:\mathrm{1000}\:\:\:{for}\:\:{which} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}^{\mathrm{3}} \:+\:{b}^{\mathrm{3}} \:+\:{c}^{\mathrm{3}} \:\:\equiv\:\:\mathrm{3}{abc}\:+\:\mathrm{1}\:\:\:\left({mod}\:\:\mathrm{1001}\right)\: \\ $$

Question Number 32609    Answers: 0   Comments: 0

1. Suppose that a, b, and c are real numbers such that a < b < c and a^3 − 3a + 1 = b^3 − 3b + 1 = c^3 − 3c + 1 = 0 . Then (1/(a^2 + b)) + (1/(b^2 + c)) + (1/(c^2 + a)) can be written as (p/q) for relatively prime of positive integers p and q. Find 100p + q

$$\mathrm{1}.\:{Suppose}\:\:{that}\:\:{a},\:{b},\:{and}\:\:{c}\:\:{are}\:\:{real}\:\:{numbers}\:\:{such}\:\:{that}\:\:{a}\:<\:{b}\:<\:{c}\:\:{and}\:\:\:{a}^{\mathrm{3}} \:−\:\mathrm{3}{a}\:+\:\mathrm{1}\:\:=\:\:{b}^{\mathrm{3}} \:−\:\mathrm{3}{b}\:+\:\mathrm{1}\:\:=\:\:{c}^{\mathrm{3}} \:−\:\mathrm{3}{c}\:+\:\mathrm{1}\:=\:\:\mathrm{0}\:. \\ $$$$\:\:\:\:{Then}\:\:\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} \:+\:{b}}\:+\:\frac{\mathrm{1}}{{b}^{\mathrm{2}} \:+\:{c}}\:+\:\frac{\mathrm{1}}{{c}^{\mathrm{2}} \:+\:{a}}\:\:\:\:{can}\:{be}\:\:{written}\:\:{as}\:\:\:\frac{{p}}{{q}}\:\:\:{for}\:\:{relatively}\:\:{prime}\:\:{of}\:\:{positive}\:\:{integers}\:\:\boldsymbol{{p}}\:\:{and}\:\:\:\boldsymbol{{q}}.\:\:\:{Find}\:\:\:\mathrm{100}{p}\:+\:{q} \\ $$

Question Number 32600    Answers: 0   Comments: 6

Question Number 32591    Answers: 0   Comments: 0

Question Number 32590    Answers: 1   Comments: 0

Question Number 32589    Answers: 0   Comments: 0

Question Number 32585    Answers: 3   Comments: 2

A body undergoing SHM about the origin has its equation x=0.2cos 5πt. Find its average speed from t=0 to t=0.7 sec.

$$\boldsymbol{{A}}\:{body}\:{undergoing}\:{SHM}\:{about}\:{the} \\ $$$${origin}\:{has}\:{its}\:{equation}\:{x}=\mathrm{0}.\mathrm{2cos}\:\mathrm{5}\pi{t}. \\ $$$${Find}\:{its}\:{average}\:{speed}\:{from}\:{t}=\mathrm{0}\:{to} \\ $$$${t}=\mathrm{0}.\mathrm{7}\:{sec}. \\ $$

Question Number 32578    Answers: 0   Comments: 1

Question Number 32569    Answers: 0   Comments: 1

Compute the number of ordered quadruple (a, b, c, d) of distinct positive integers so that (( ((a),(b) )),( ((c),(d) )) ) = 21 .

$${Compute}\:\:{the}\:\:{number}\:\:{of}\:\:\:{ordered}\:\:{quadruple}\:\:\left({a},\:{b},\:{c},\:{d}\right)\:\:{of}\:\:{distinct}\:\:{positive}\:\:{integers}\:\:\:{so}\:\:{that}\:\:\begin{pmatrix}{\begin{pmatrix}{{a}}\\{{b}}\end{pmatrix}}\\{\begin{pmatrix}{{c}}\\{{d}}\end{pmatrix}}\end{pmatrix}\:\:\:=\:\:\mathrm{21}\:. \\ $$

Question Number 32563    Answers: 2   Comments: 2

The set of values of ′a′ for which all the solutions of the equation 4sin^4 x+asin^2 x+3=0 are real and distinct is ?

$$\boldsymbol{{T}}{he}\:{set}\:{of}\:{values}\:{of}\:'{a}'\:{for}\:{which}\: \\ $$$${all}\:{the}\:{solutions}\:{of}\:{the}\:{equation} \\ $$$$\mathrm{4sin}\:^{\mathrm{4}} {x}+{a}\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{3}=\mathrm{0}\:{are}\:{real}\:{and}\: \\ $$$${distinct}\:{is}\:? \\ $$

Question Number 32584    Answers: 1   Comments: 0

Question Number 32546    Answers: 0   Comments: 1

Question Number 32577    Answers: 0   Comments: 3

Question Number 32543    Answers: 1   Comments: 0

The coefficient of x^4 in the expansion of (1+5x+9x^2 +.....∞)(1+x^2 )^(11) is a) 171 b) 172 c) 173 d) 176

$$\boldsymbol{{T}}{he}\:{coefficient}\:{of}\:{x}^{\mathrm{4}} \:{in}\:{the}\:{expansion} \\ $$$${of}\:\left(\mathrm{1}+\mathrm{5}{x}+\mathrm{9}{x}^{\mathrm{2}} +.....\infty\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{11}} {is} \\ $$$$\left.{a}\right)\:\mathrm{171} \\ $$$$\left.{b}\right)\:\mathrm{172} \\ $$$$\left.{c}\right)\:\mathrm{173} \\ $$$$\left.{d}\right)\:\mathrm{176} \\ $$

Question Number 32541    Answers: 2   Comments: 0

Coefficient of x^5 in the expansion of (x^2 −x−2)^5 is

$${Coefficient}\:{of}\:{x}^{\mathrm{5}} \:{in}\:{the}\:{expansion} \\ $$$${of}\:\left({x}^{\mathrm{2}} −{x}−\mathrm{2}\right)^{\mathrm{5}} \:{is} \\ $$

Question Number 32538    Answers: 1   Comments: 1

Question Number 32535    Answers: 0   Comments: 0

k ≤ 2018 f (f (n) ) = 2n f (k) = 2018 how many the possible of k integers ?

$${k}\:\:\leqslant\:\:\mathrm{2018} \\ $$$${f}\:\left({f}\:\left({n}\right)\:\right)\:\:=\:\:\mathrm{2}{n} \\ $$$${f}\:\left({k}\right)\:\:=\:\:\mathrm{2018} \\ $$$${how}\:\:{many}\:\:\:{the}\:{possible}\:{of}\:\:\:\boldsymbol{{k}}\:\:{integers}\:? \\ $$

Question Number 32534    Answers: 1   Comments: 0

Question Number 32532    Answers: 0   Comments: 3

If a,b,c are 3 positive numbers in an A.P and T= ((a+8b)/(2b−a))+((8b+c)/(2b−c)). Then the value of T^( 2 ) is ? Ans. given is 361.

$$\boldsymbol{{I}}{f}\:{a},{b},{c}\:{are}\:\mathrm{3}\:{positive}\:{numbers}\:{in}\:{an} \\ $$$$\boldsymbol{{A}}.\boldsymbol{{P}}\:{and}\: \\ $$$${T}=\:\frac{{a}+\mathrm{8}{b}}{\mathrm{2}{b}−{a}}+\frac{\mathrm{8}{b}+{c}}{\mathrm{2}{b}−{c}}. \\ $$$${Then}\:{the}\:{value}\:{of}\:{T}^{\:\:\mathrm{2}\:} \:{is}\:? \\ $$$${Ans}.\:{given}\:{is}\:\mathrm{361}. \\ $$

Question Number 32529    Answers: 1   Comments: 2

Question Number 32517    Answers: 0   Comments: 1

calculatelim_(x→0^+ ) ((x^(sinx) −(sinx)^x )/x) .

$${calculatelim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\frac{{x}^{{sinx}} \:\:−\left({sinx}\right)^{{x}} }{{x}}\:. \\ $$

  Pg 1668      Pg 1669      Pg 1670      Pg 1671      Pg 1672      Pg 1673      Pg 1674      Pg 1675      Pg 1676      Pg 1677   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com