Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1671

Question Number 39860    Answers: 1   Comments: 1

Question Number 39854    Answers: 2   Comments: 2

Question Number 39851    Answers: 2   Comments: 1

Question Number 39848    Answers: 2   Comments: 0

Question Number 39846    Answers: 2   Comments: 2

the sum of the four digit even numbers that can be formed with digits 0 3 5 4 without repitation

$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{four}\:\:\mathrm{digit}\:\mathrm{even}\:\mathrm{numbers}\:\mathrm{that}\:\mathrm{can}\:\mathrm{be}\:\mathrm{formed}\:\mathrm{with}\:\mathrm{digits}\:\mathrm{0}\:\mathrm{3}\:\mathrm{5}\:\mathrm{4}\:\mathrm{without}\:\mathrm{repitation} \\ $$

Question Number 39840    Answers: 0   Comments: 1

calculate lim_(x→0) ∫_(x+1) ^(x^2 +1) ln(1+t) e^(−t) dt

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\int_{{x}+\mathrm{1}} ^{{x}^{\mathrm{2}} \:+\mathrm{1}} \:\:{ln}\left(\mathrm{1}+{t}\right)\:{e}^{−{t}} {dt}\: \\ $$

Question Number 39839    Answers: 0   Comments: 1

calculate lim_(x→1) ∫_x ^x^2 ((arctan(2t))/(sin(πt)))dt

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\:\:\int_{{x}} ^{{x}^{\mathrm{2}} } \:\:\:\frac{{arctan}\left(\mathrm{2}{t}\right)}{{sin}\left(\pi{t}\right)}{dt} \\ $$

Question Number 39838    Answers: 0   Comments: 1

find lim_(ξ→0) ∫_0 ^1 (dx/((√(1+ξx^2 ))−(√(1−ξx^2 ))))

$${find}\:{lim}_{\xi\rightarrow\mathrm{0}} \:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\sqrt{\mathrm{1}+\xi{x}^{\mathrm{2}} }−\sqrt{\mathrm{1}−\xi{x}^{\mathrm{2}} }}\: \\ $$

Question Number 39837    Answers: 0   Comments: 0

let S_n =Σ_(n=1) ^∞ e^(−n[(x/n)]) find a equivalent of S_n when n→+∞

$${let}\:{S}_{{n}} =\sum_{{n}=\mathrm{1}} ^{\infty} \:\:{e}^{−{n}\left[\frac{{x}}{{n}}\right]} \\ $$$${find}\:{a}\:{equivalent}\:{of}\:{S}_{{n}} \:{when}\:{n}\rightarrow+\infty \\ $$

Question Number 39836    Answers: 0   Comments: 0

calculate ∫_0 ^(+∞) ((ln(1+ix^2 ))/(2+x^2 ))dx

$${calculate}\:\:\int_{\mathrm{0}} ^{+\infty} \frac{{ln}\left(\mathrm{1}+{ix}^{\mathrm{2}} \right)}{\mathrm{2}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 39835    Answers: 0   Comments: 0

simplify [(([nx])/n)] with n natural integr not0 and x real

$${simplify}\:\left[\frac{\left[{nx}\right]}{{n}}\right]\:{with}\:{n}\:{natural}\:{integr}\:{not}\mathrm{0}\:\:{and}\:{x}\:{real} \\ $$

Question Number 39834    Answers: 1   Comments: 0

calculate ∫_0 ^(π/6) ∣ cos(2x)−cos(3x)∣dx

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} \:\mid\:{cos}\left(\mathrm{2}{x}\right)−{cos}\left(\mathrm{3}{x}\right)\mid{dx} \\ $$

Question Number 39833    Answers: 2   Comments: 1

find ∫ ((ln(x+(√(x^2 −1))))/(√(x^2 −1))) dx 2) calculate ∫_2 ^5 ((ln(x+(√(x^2 −1)))/(√(x^2 −1)))dx

$${find}\:\:\int\:\:\:\:\frac{{ln}\left({x}+\sqrt{{x}^{\mathrm{2}} \:−\mathrm{1}}\right)}{\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:{dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{2}} ^{\mathrm{5}} \:\:\:\frac{{ln}\left({x}+\sqrt{{x}^{\mathrm{2}} \:−\mathrm{1}}\right.}{\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{dx} \\ $$

Question Number 39827    Answers: 2   Comments: 0

if f(x) = 3x^3 + px^2 + 4x − 8 and (x − 1) is a factor of f(x). a) find the value of p. with these value of p b) solve the equation f(x) = 0. if α and β are roots of f(x), c) find α + β and αβ d) Evaluate α^2 + β^2 hence α − β

$${if}\:{f}\left({x}\right)\:=\:\mathrm{3}{x}^{\mathrm{3}} \:+\:{px}^{\mathrm{2}} \:+\:\mathrm{4}{x}\:−\:\mathrm{8} \\ $$$${and}\:\left({x}\:−\:\mathrm{1}\right)\:{is}\:{a}\:{factor}\:{of}\: \\ $$$${f}\left({x}\right). \\ $$$$\left.{a}\right)\:{find}\:{the}\:{value}\:{of}\:{p}. \\ $$$${with}\:{these}\:{value}\:{of}\:{p} \\ $$$$\left.{b}\right)\:{solve}\:{the}\:{equation}\:{f}\left({x}\right)\:=\:\mathrm{0}. \\ $$$${if}\:\alpha\:{and}\:\beta\:{are}\:{roots}\:{of}\: \\ $$$${f}\left({x}\right),\: \\ $$$$\left.{c}\right)\:{find}\:\alpha\:+\:\beta\:{and}\:\alpha\beta \\ $$$$\left.{d}\right)\:{Evaluate}\:\alpha^{\mathrm{2}} \:+\:\beta^{\mathrm{2}} \:{hence}\:\alpha\:−\:\beta \\ $$$$ \\ $$

Question Number 40139    Answers: 0   Comments: 3

let I_n = ∫_0 ^1 x^n (√(1−x)) dx 1) calculate I_0 and I_1 2) prove that ∀n∈ N^★ (3+2n) I_n =2n I_(n−1) 3) find I_n interms of n

$${let}\:\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{{n}} \sqrt{\mathrm{1}−{x}}\:{dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}_{\mathrm{0}} \:\:{and}\:{I}_{\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\:\forall{n}\in\:{N}^{\bigstar} \:\:\:\:\left(\mathrm{3}+\mathrm{2}{n}\right)\:{I}_{{n}} =\mathrm{2}{n}\:{I}_{{n}−\mathrm{1}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{I}_{{n}} \:\:{interms}\:{of}\:{n} \\ $$

Question Number 39814    Answers: 2   Comments: 0

kwame, ama and yaw shared an amount of money in the ratio 3:4:5. if ama had $8,400 more than kwame. find the total amount shared.

$$\mathrm{kwame},\:\mathrm{ama}\:\mathrm{and}\:\mathrm{yaw}\:\mathrm{shared}\:\mathrm{an}\:\mathrm{amount}\:\mathrm{of}\:\mathrm{money} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{3}:\mathrm{4}:\mathrm{5}.\:\mathrm{if}\:\mathrm{ama}\:\mathrm{had}\:\$\mathrm{8},\mathrm{400}\:\mathrm{more}\:\mathrm{than}\:\mathrm{kwame}. \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{total}\:\mathrm{amount}\:\mathrm{shared}. \\ $$

Question Number 39811    Answers: 1   Comments: 1

Question Number 39799    Answers: 1   Comments: 0

what will be the number which makes 680621 a perfect square root?

$$\boldsymbol{\mathrm{what}}\:\boldsymbol{\mathrm{will}}\:\boldsymbol{\mathrm{be}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{number}}\:\boldsymbol{\mathrm{which}}\:\boldsymbol{\mathrm{makes}}\:\mathrm{680621} \\ $$$$\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{perfect}}\:\boldsymbol{\mathrm{square}}\:\boldsymbol{\mathrm{root}}? \\ $$

Question Number 39798    Answers: 0   Comments: 5

Please someone should propose a textbook that really explains Gauss law,electric flux and capacitance.I need to download 1.. Thanks.

$${Please}\:{someone}\:{should}\:{propose}\:{a} \\ $$$${textbook}\:{that}\:{really}\:{explains} \\ $$$${Gauss}\:{law},{electric}\:{flux}\:{and} \\ $$$${capacitance}.{I}\:{need}\:{to}\:{download}\:\mathrm{1}.. \\ $$$${Thanks}. \\ $$

Question Number 39794    Answers: 1   Comments: 0

Two charged concentric spheres have radii of 10cm and 18cm.The charge on the inner sphere is 6.0×10^(−8) C and that on the outer sphere is 2.0×10^(−8) C.Find the electric field (i)at r=12cm and (ii)at r=25cm

$${Two}\:{charged}\:{concentric}\:{spheres} \\ $$$${have}\:{radii}\:{of}\:\mathrm{10}{cm}\:{and}\:\mathrm{18}{cm}.{The} \\ $$$${charge}\:{on}\:{the}\:{inner}\:{sphere}\:{is} \\ $$$$\mathrm{6}.\mathrm{0}×\mathrm{10}^{−\mathrm{8}} {C}\:{and}\:{that}\:{on}\:{the}\:{outer} \\ $$$${sphere}\:{is}\:\mathrm{2}.\mathrm{0}×\mathrm{10}^{−\mathrm{8}} {C}.{Find}\:{the} \\ $$$${electric}\:{field}\:\left({i}\right){at}\:{r}=\mathrm{12}{cm}\:{and} \\ $$$$\left({ii}\right){at}\:{r}=\mathrm{25}{cm} \\ $$$$ \\ $$$$ \\ $$

Question Number 39792    Answers: 1   Comments: 1

A positive charge of magnigude 2.5μC is at the centre of an uncharged spherical conducting shell of inner radius 60cm and an outer radius of 90cm. (i)find the charge densities on thd inner and outer surfaces of the shell and the total charge on each surface. ii)find the electricity field everywhere.

$${A}\:{positive}\:{charge}\:{of}\:{magnigude} \\ $$$$\mathrm{2}.\mathrm{5}\mu{C}\:{is}\:{at}\:{the}\:{centre}\:{of}\:{an}\:{uncharged} \\ $$$${spherical}\:{conducting}\:{shell}\:{of}\:{inner} \\ $$$${radius}\:\mathrm{60}{cm}\:{and}\:{an}\:{outer}\:{radius} \\ $$$${of}\:\mathrm{90}{cm}. \\ $$$$\left({i}\right){find}\:{the}\:{charge}\:{densities}\:{on}\:{thd} \\ $$$${inner}\:{and}\:{outer}\:{surfaces}\:{of}\:{the} \\ $$$${shell}\:{and}\:{the}\:{total}\:{charge}\:{on}\:{each} \\ $$$${surface}. \\ $$$$\left.{ii}\right){find}\:{the}\:{electricity}\:{field} \\ $$$${everywhere}. \\ $$

Question Number 39787    Answers: 0   Comments: 2

calculste I_λ = ∫_(−∞) ^(+∞) ((cos(λx^n ))/(1+x^2 )) dx with λ from R and n integr natural 2) find the vslue of ∫_(−∞) ^(+∞) ((cos(3 x^9 ))/(1+x^2 )) dx .

$${calculste}\:\:{I}_{\lambda} \:=\:\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left(\lambda{x}^{{n}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\:{with} \\ $$$$\lambda\:{from}\:{R}\:{and}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{vslue}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left(\mathrm{3}\:{x}^{\mathrm{9}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:. \\ $$

Question Number 39783    Answers: 1   Comments: 0

Find roots of f(x)=x^4 −10x^3 +35x^2 −50x+24

$${Find}\:{roots}\:{of} \\ $$$${f}\left({x}\right)={x}^{\mathrm{4}} −\mathrm{10}{x}^{\mathrm{3}} +\mathrm{35}{x}^{\mathrm{2}} −\mathrm{50}{x}+\mathrm{24} \\ $$

Question Number 39779    Answers: 1   Comments: 0

f(x)=x^4 −2x^3 +3x^2 −4x+5 Find the roots.

$${f}\left({x}\right)={x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{5} \\ $$$${Find}\:{the}\:{roots}. \\ $$

Question Number 39776    Answers: 0   Comments: 3

Question Number 39775    Answers: 0   Comments: 1

  Pg 1666      Pg 1667      Pg 1668      Pg 1669      Pg 1670      Pg 1671      Pg 1672      Pg 1673      Pg 1674      Pg 1675   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com