Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1671

Question Number 38881    Answers: 1   Comments: 0

solve for 0 ≤ θ ≤π, the equations a)_ cos (2θ − (π/2))= (1/2) b) cos θ − (√3) sin θ = 0

$${solve}\:{for}\:\mathrm{0}\:\leqslant\:\theta\:\leqslant\pi,\:{the}\:{equations} \\ $$$$\left.{a}\right)_{} \:\mathrm{cos}\:\left(\mathrm{2}\theta\:−\:\frac{\pi}{\mathrm{2}}\right)=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left.{b}\right)\:\mathrm{cos}\:\theta\:−\:\sqrt{\mathrm{3}}\:{sin}\:\theta\:=\:\mathrm{0} \\ $$

Question Number 38880    Answers: 1   Comments: 0

Find the equation of the perpendicular bisector of the line segment joining the points (1,3) and (5,1)

$${Find}\:{the}\:{equation}\:{of}\:{the}\:{perpendicular} \\ $$$${bisector}\:{of}\:{the}\:{line}\:{segment}\:{joining} \\ $$$${the}\:{points}\:\left(\mathrm{1},\mathrm{3}\right)\:{and}\:\left(\mathrm{5},\mathrm{1}\right) \\ $$

Question Number 38879    Answers: 1   Comments: 0

Find the equation of the line through (2,−3) which make angles 45° with the line 2x − y = 2.

$${Find}\:{the}\:{equation}\:{of}\:{the}\:{line}\:{through} \\ $$$$\left(\mathrm{2},−\mathrm{3}\right)\:{which}\:{make}\:{angles}\:\mathrm{45}°\:{with} \\ $$$${the}\:{line}\:\mathrm{2}{x}\:−\:{y}\:=\:\mathrm{2}. \\ $$

Question Number 38878    Answers: 1   Comments: 0

Find the equation on a line joining the points A(2x,4),B(x,3) and C(4,3)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{on}\:\mathrm{a}\:\mathrm{line}\:\mathrm{joining} \\ $$$$\mathrm{the}\:\mathrm{points}\:\mathrm{A}\left(\mathrm{2}{x},\mathrm{4}\right),{B}\left({x},\mathrm{3}\right)\:{and}\: \\ $$$${C}\left(\mathrm{4},\mathrm{3}\right) \\ $$

Question Number 38924    Answers: 1   Comments: 0

A wave has a wavelength of 1.5m, calculate the phase angle between a point 0.25m from the peak of the wave and another point 1m further along the same peak.

$${A}\:{wave}\:{has}\:{a}\:{wavelength}\:{of}\:\mathrm{1}.\mathrm{5}{m}, \\ $$$${calculate}\:{the}\:{phase}\:{angle}\:{between} \\ $$$${a}\:{point}\:\mathrm{0}.\mathrm{25}{m}\:{from}\:{the}\:{peak}\:{of}\:{the} \\ $$$${wave}\:{and}\:{another}\:{point}\:\mathrm{1}{m}\:{further} \\ $$$${along}\:{the}\:{same}\:{peak}. \\ $$

Question Number 38876    Answers: 1   Comments: 2

solve: (d^2 y/dx^2 ) + 2x (dy/dx) + 5y = 0

$$\mathrm{solve}:\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:\:+\:\:\mathrm{2x}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:\:+\:\mathrm{5y}\:=\:\mathrm{0} \\ $$

Question Number 38870    Answers: 0   Comments: 0

i am posting what i think helpful...

$${i}\:{am}\:{posting}\:{what}\:{i}\:{think}\:{helpful}... \\ $$

Question Number 38865    Answers: 0   Comments: 0

Question Number 38864    Answers: 0   Comments: 0

Question Number 38863    Answers: 0   Comments: 0

Question Number 38862    Answers: 0   Comments: 0

Question Number 38861    Answers: 0   Comments: 0

Question Number 38860    Answers: 0   Comments: 0

Question Number 38859    Answers: 0   Comments: 0

Question Number 38858    Answers: 0   Comments: 0

Question Number 38857    Answers: 0   Comments: 0

Question Number 38856    Answers: 0   Comments: 0

Question Number 38855    Answers: 0   Comments: 0

Question Number 38854    Answers: 0   Comments: 0

Question Number 38853    Answers: 0   Comments: 1

Question Number 39030    Answers: 2   Comments: 3

1) let f(x) = ∫_0 ^∞ (dt/(1+x^2 t^4 )) with x >0 find a simple form of f(x) 2) calculate ∫_0 ^(+∞) (dt/(1+t^4 )) 3) calculate ∫_0 ^∞ (dt/(1+3t^4 ))

$$\left.\mathrm{1}\right)\:{let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\mathrm{1}+{x}^{\mathrm{2}} {t}^{\mathrm{4}} }\:\:{with}\:{x}\:>\mathrm{0} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} } \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dt}}{\mathrm{1}+\mathrm{3}{t}^{\mathrm{4}} } \\ $$

Question Number 38849    Answers: 1   Comments: 1

Question Number 38847    Answers: 0   Comments: 0

Question Number 38836    Answers: 0   Comments: 0

Question Number 38825    Answers: 1   Comments: 4

Question Number 38822    Answers: 1   Comments: 1

The incident wave set up on a string of length fixed at each end is given by: y_1 =Asin(kx−wt) i)what is the equation of motion of the reflected wave,y_2 . ii)obtain the resultant,y=y_1 +y_2 of the two waves. iii)what type of resultant wave is this? iv)for what values of x will the amplitud of the resultant wave become zero? v)for what values of x will y be maximum?

$${The}\:{incident}\:{wave}\:{set}\:{up}\:{on}\:{a}\:{string} \\ $$$${of}\:{length}\:{fixed}\:{at}\:{each}\:{end}\:{is}\:{given} \\ $$$${by}:\:\:\:{y}_{\mathrm{1}} ={Asin}\left({kx}−{wt}\right) \\ $$$$\left.{i}\right){what}\:{is}\:{the}\:{equation}\:{of}\:{motion} \\ $$$${of}\:{the}\:{reflected}\:{wave},{y}_{\mathrm{2}} . \\ $$$$\left.{ii}\right){obtain}\:{the}\:{resultant},{y}={y}_{\mathrm{1}} +{y}_{\mathrm{2}} \\ $$$${of}\:{the}\:{two}\:{waves}. \\ $$$$\left.{iii}\right){what}\:{type}\:{of}\:{resultant}\:{wave}\:{is} \\ $$$${this}? \\ $$$$\left.{iv}\right){for}\:{what}\:{values}\:{of}\:{x}\:{will}\:{the} \\ $$$${amplitud}\:{of}\:{the}\:{resultant}\:{wave}\: \\ $$$${become}\:{zero}? \\ $$$$\left.{v}\right){for}\:{what}\:{values}\:{of}\:{x}\:{will}\:{y}\:{be} \\ $$$${maximum}? \\ $$

  Pg 1666      Pg 1667      Pg 1668      Pg 1669      Pg 1670      Pg 1671      Pg 1672      Pg 1673      Pg 1674      Pg 1675   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com