Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1669

Question Number 41324    Answers: 1   Comments: 2

Question Number 41321    Answers: 1   Comments: 1

If A is a square matrix of order 3, then ∣(A−A^T )^(2011) ∣ = ?

$$\mathrm{If}\:\mathrm{A}\:\mathrm{is}\:\mathrm{a}\:\mathrm{square}\:\mathrm{matrix}\:\mathrm{of}\:\mathrm{order}\:\mathrm{3},\:\mathrm{then} \\ $$$$\:\mid\left(\mathrm{A}−\mathrm{A}^{\mathrm{T}} \right)^{\mathrm{2011}} \mid\:=\:? \\ $$

Question Number 41305    Answers: 1   Comments: 1

[(1,2,3),(3,4,5),(5,6,7) ] find determinant of given matrix?

$$\begin{bmatrix}{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}\\{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}\\{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}\end{bmatrix} \\ $$$${find}\:{determinant}\:{of}\:{given}\:{matrix}? \\ $$

Question Number 41302    Answers: 1   Comments: 1

calculate ∫_1 ^(+∞) (dx/(x^2 (√(x^2 +x+1))))

$${calculate}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}} \\ $$

Question Number 41301    Answers: 1   Comments: 4

let f(x)=∫_0 ^∞ e^(−ax) ln(1+e^(−bx) )dx with a>0 and b>0 1) calculate (∂f/∂a)(x) 2) calculate (∂f/∂b)(x) 3)find the value of ∫_0 ^∞ e^(−2x) ln(1+e^(−x) )dx and ∫_0 ^∞ e^(−x) ln(1+e^(−2x) )dx .

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{ax}} {ln}\left(\mathrm{1}+{e}^{−{bx}} \right){dx}\:{with}\:{a}>\mathrm{0}\:{and} \\ $$$${b}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\frac{\partial{f}}{\partial{a}}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\frac{\partial{f}}{\partial{b}}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{e}^{−{x}} \right){dx}\:{and} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} {ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{x}} \right){dx}\:. \\ $$

Question Number 41292    Answers: 1   Comments: 0

Question Number 41291    Answers: 2   Comments: 0

Let ABCD be a parallelogram whose diagonals intersect at P and ley O be the origin, then OA^(→) +OB^(→) +OC^(→) +OD^(→) equals

$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{parallelogram}\:\mathrm{whose} \\ $$$$\mathrm{diagonals}\:\mathrm{intersect}\:\mathrm{at}\:{P}\:\mathrm{and}\:\mathrm{ley}\:{O}\:\mathrm{be} \\ $$$$\mathrm{the}\:\mathrm{origin},\:\mathrm{then}\:\overset{\rightarrow} {{OA}}+\overset{\rightarrow} {{OB}}+\overset{\rightarrow} {{OC}}+\overset{\rightarrow} {{OD}}\: \\ $$$$\mathrm{equals} \\ $$

Question Number 41290    Answers: 1   Comments: 0

An electric pole PN is such that PN=12cm where N is the top of the pole and P the base .At a given moment of the day the shadow of the pole PN′ = PN. find a) the length NN′ b) the bearing of P from N.

$${An}\:{electric}\:{pole}\:{PN}\:{is}\:{such}\:{that}\:{PN}=\mathrm{12}{cm}\:{where}\:{N}\:{is}\:{the}\:{top}\:{of}\:{the}\:{pole}\:{and}\:{P}\:{the}\:{base} \\ $$$$.{At}\:{a}\:{given}\:{moment}\:{of}\:{the}\:{day}\:{the}\:\boldsymbol{{shadow}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{pole}}\:{PN}'\:=\:{PN}.\:{find}\: \\ $$$$\left.{a}\right)\:{the}\:{length}\:{NN}' \\ $$$$\left.{b}\right)\:{the}\:{bearing}\:{of}\:{P}\:{from}\:{N}. \\ $$

Question Number 41288    Answers: 1   Comments: 0

by using the knowledge of sequence and series show that the compound interest is given by An=P(1+((RT)/(100)))^n

$$\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{using}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{knowledge}}\:\boldsymbol{\mathrm{of}}\: \\ $$$$\boldsymbol{\mathrm{sequence}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{series}}\:\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}} \\ $$$$\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{compound}}\:\boldsymbol{\mathrm{interest}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{given}}\:\boldsymbol{\mathrm{by}} \\ $$$$\boldsymbol{\mathrm{An}}=\boldsymbol{\mathrm{P}}\left(\mathrm{1}+\frac{\boldsymbol{\mathrm{RT}}}{\mathrm{100}}\right)^{\boldsymbol{\mathrm{n}}} \\ $$

Question Number 41280    Answers: 1   Comments: 1

find f(x) = ∫_0 ^1 arctan(xt^2 )dt

$${find}\:\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{arctan}\left({xt}^{\mathrm{2}} \right){dt} \\ $$

Question Number 41279    Answers: 0   Comments: 1

let f(x)=∫_0 ^∞ arctan(xt^2 )dt . find a explicite form of f^′ (x)

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:{arctan}\left({xt}^{\mathrm{2}} \right){dt}\:. \\ $$$${find}\:\:{a}\:{explicite}\:{form}\:{of}\:{f}^{'} \left({x}\right) \\ $$

Question Number 41273    Answers: 0   Comments: 2

find f(x)=∫_0 ^(+∞) arctan(xt^2 )dt with x fromR .

$${find}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{+\infty} \:{arctan}\left({xt}^{\mathrm{2}} \right){dt}\:\:{with}\:{x}\:{fromR}\:. \\ $$

Question Number 41286    Answers: 0   Comments: 0

find S_n =Σ_(k=0) ^n (1/(3k+1)) interms of H_n =Σ_(k=1) ^n (1/k)

$${find}\:\:{S}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\mathrm{1}}{\mathrm{3}{k}+\mathrm{1}}\:{interms}\:{of}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$

Question Number 41255    Answers: 2   Comments: 1

Question Number 41252    Answers: 1   Comments: 1

Question Number 41248    Answers: 2   Comments: 4

Question Number 41246    Answers: 2   Comments: 1

Question Number 41236    Answers: 2   Comments: 0

find the value of Σ_(n=2) ^∞ ((3n^2 +1)/((n^2 −1)^3 ))

$${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\:\frac{\mathrm{3}{n}^{\mathrm{2}} \:+\mathrm{1}}{\left({n}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} } \\ $$

Question Number 41233    Answers: 2   Comments: 1

Question Number 41231    Answers: 1   Comments: 1

Question Number 41214    Answers: 3   Comments: 1

Question Number 41203    Answers: 1   Comments: 5

Question Number 41174    Answers: 1   Comments: 0

Question Number 41167    Answers: 1   Comments: 0

The LCM and the GCF of three intergers are 180 and 3 respectively. Two numbers are 45 and 60. What is the third number

$${The}\:{LCM}\:{and}\:{the}\:{GCF}\:{of}\:{three} \\ $$$${intergers}\:{are}\:\mathrm{180}\:{and}\:\mathrm{3}\:{respectively}. \\ $$$${Two}\:{numbers}\:{are}\:\mathrm{45}\:{and}\:\mathrm{60}. \\ $$$${What}\:{is}\:{the}\:{third}\:{number} \\ $$

Question Number 41160    Answers: 3   Comments: 3

Question Number 41157    Answers: 2   Comments: 3

  Pg 1664      Pg 1665      Pg 1666      Pg 1667      Pg 1668      Pg 1669      Pg 1670      Pg 1671      Pg 1672      Pg 1673   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com