Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1668
Question Number 35172 Answers: 0 Comments: 4
$$\mathrm{please} \\ $$$$\mathrm{I}\:\mathrm{need}\:\mathrm{android}\:\mathrm{app}\:\mathrm{that} \\ $$$$\mathrm{edit}\:\mathrm{math}\:\mathrm{equations} \\ $$$$\mathrm{in}\:\mathrm{ARABIC} \\ $$
Question Number 35167 Answers: 0 Comments: 2
Question Number 35165 Answers: 0 Comments: 2
$${In}\:{how}\:{many}\:{ways}\:{can}\:{a}\:{committee} \\ $$$${of}\:\mathrm{11}\:{people}\:{be}\:{selected}\:{from}\:\mathrm{9} \\ $$$${people}. \\ $$
Question Number 35153 Answers: 1 Comments: 0
Question Number 35152 Answers: 0 Comments: 2
Question Number 35151 Answers: 1 Comments: 0
Question Number 35150 Answers: 2 Comments: 0
Question Number 35139 Answers: 1 Comments: 2
Question Number 35136 Answers: 0 Comments: 1
Question Number 35131 Answers: 0 Comments: 2
Question Number 35127 Answers: 0 Comments: 0
$${Draw}\:{structure}\:{for} \\ $$$$\mathrm{2}-\left(\mathrm{4}-{Isobutylphenyl}\right){propanoic}\:{acid} \\ $$
Question Number 35117 Answers: 1 Comments: 0
$$\int\frac{\mathrm{2}{x}+\mathrm{3}}{{x}^{\mathrm{4}} −\mathrm{3}{x}−\mathrm{2}}{dx} \\ $$
Question Number 35124 Answers: 0 Comments: 9
Question Number 35115 Answers: 0 Comments: 2
Question Number 35101 Answers: 2 Comments: 1
$${Find}\:{volume}\:{enclosed}\:{by} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\frac{{z}^{\mathrm{2}} }{{c}^{\mathrm{2}} }=\mathrm{1}\:\:. \\ $$
Question Number 35092 Answers: 0 Comments: 0
Question Number 35088 Answers: 0 Comments: 2
$$\boldsymbol{{a}}\:\boldsymbol{{son}}\:\boldsymbol{{and}}\:\boldsymbol{{father}}\:\boldsymbol{{do}}\:\boldsymbol{{a}}\:\boldsymbol{{work}}\:\boldsymbol{{in}} \\ $$$$\mathrm{24}\:\boldsymbol{{day}}\:.\:\boldsymbol{{if}}\:\boldsymbol{{both}}\:\boldsymbol{{work}}\:\boldsymbol{{together}} \\ $$$$\boldsymbol{{and}}\:\boldsymbol{{father}}\:\boldsymbol{{work}}\:\boldsymbol{{last}}\:\mathrm{6}\:\boldsymbol{{day}}\:\boldsymbol{{only}} \\ $$$$\boldsymbol{{then}}\:\boldsymbol{{they}}\:\boldsymbol{{how}}\:\boldsymbol{{much}}\:\boldsymbol{{do}} \\ $$
Question Number 35084 Answers: 1 Comments: 1
Question Number 35080 Answers: 2 Comments: 0
$${If}\:\frac{{a}}{{b}+{c}}\:+\frac{{b}}{{c}+{a}}\:+\frac{{c}}{{a}+{b}}=\mathrm{1}\:{then}\:{prove}\:{that} \\ $$$$\frac{{a}^{\mathrm{2}} }{{b}+{c}}\:+\frac{{b}^{\mathrm{2}} }{{c}+{a}}\:+\frac{{c}^{\mathrm{2}} }{{a}+{b}}=\mathrm{0} \\ $$
Question Number 35072 Answers: 0 Comments: 2
$$\mathrm{An}\:\mathrm{n}-\mathrm{digit}\:\mathrm{decimal}\:\mathrm{number}\:\mathrm{has}\:\mathrm{been} \\ $$$$\mathrm{conveerted}\:\mathrm{into}\:\mathrm{octal}\:\mathrm{number}.\mathrm{Say}\:\mathrm{it} \\ $$$$\mathrm{has}\:\mathrm{m}\:\mathrm{digits}.\mathrm{What}\:\mathrm{are}\:\mathrm{possible}\:\:\mathrm{minimum}\: \\ $$$$\mathrm{and}\:\mathrm{maximum}\:\mathrm{values}\:\mathrm{of}\:\mathrm{m}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of} \\ $$$$\mathrm{n}? \\ $$
Question Number 35071 Answers: 1 Comments: 0
$$\mathrm{A}\:\mathrm{20}-\mathrm{digit}\:\mathrm{decimal}\:\mathrm{number}\:\mathrm{has}\:\mathrm{been} \\ $$$$\mathrm{converted}\:\mathrm{into}\:\mathrm{octal}\:\mathrm{system}.\mathrm{Say}\:\mathrm{it}\:\mathrm{has}\: \\ $$$$\mathrm{n}\:\mathrm{digits}.\:\mathrm{What}\:\mathrm{can}\:\mathrm{be}\:\mathrm{minimum}\:\mathrm{and} \\ $$$$\mathrm{maximum}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:\mathrm{n}? \\ $$$$ \\ $$
Question Number 35062 Answers: 0 Comments: 0
$${calculate}\:{A}_{{n}} \:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dt}}{\left({t}^{\mathrm{4}} \:+\mathrm{1}\right)^{{n}} } \\ $$$${with}\:{n}\:{integr}\:{natural}\:. \\ $$
Question Number 35061 Answers: 2 Comments: 1
$${find}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\frac{{x}^{\mathrm{2}} \:+\mathrm{3}}{\left({x}^{\mathrm{4}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 35060 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{sinx}\:{ln}\left({cosx}\right){dx} \\ $$
Question Number 35059 Answers: 2 Comments: 2
$${find}\:\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\:\frac{{dx}}{{cosx}\:+{sinx}} \\ $$
Question Number 35058 Answers: 1 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{cos}^{\mathrm{2}} {t}\right)^{\mathrm{3}} } \\ $$
Pg 1663 Pg 1664 Pg 1665 Pg 1666 Pg 1667 Pg 1668 Pg 1669 Pg 1670 Pg 1671 Pg 1672
Terms of Service
Privacy Policy
Contact: info@tinkutara.com