Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1668

Question Number 41686    Answers: 1   Comments: 2

Question Number 41682    Answers: 2   Comments: 0

find radius of curvature to y=sin x at x=π/6 .

$${find}\:{radius}\:{of}\:{curvature}\:{to} \\ $$$${y}=\mathrm{sin}\:{x}\:\:{at}\:\:{x}=\pi/\mathrm{6}\:. \\ $$

Question Number 41679    Answers: 1   Comments: 5

let f(x) = ∫_0 ^1 ln(1+t +xt^2 )dt 1) calculate f^′ (x) then find a simple form of f(x) 2) calculate ∫_0 ^1 ln(1+t +t^2 )dt 3) calculate ∫_0 ^1 ln(1−t^3 )dt .

$${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{t}\:+{xt}^{\mathrm{2}} \right){dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{'} \left({x}\right)\:{then}\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{t}\:+{t}^{\mathrm{2}} \right){dt} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{ln}\left(\mathrm{1}−{t}^{\mathrm{3}} \right){dt}\:. \\ $$

Question Number 41678    Answers: 1   Comments: 0

prove that ∫_0 ^∞ cos(x^2 )dx=∫_0 ^∞ sin(x^2 )dx by using only series.

$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{\mathrm{2}} \right){dx}=\int_{\mathrm{0}} ^{\infty} \:{sin}\left({x}^{\mathrm{2}} \right){dx}\:{by}\:{using} \\ $$$${only}\:{series}. \\ $$

Question Number 41677    Answers: 2   Comments: 2

calculate A = ∫_0 ^(π/4) cos^8 xdx and B= ∫_0 ^(π/4) sin^8 xdx 2) calculate A +B and A−B 3) calculate A^2 −B^2

$${calculate}\:{A}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{cos}^{\mathrm{8}} {xdx}\:{and}\: \\ $$$${B}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{sin}^{\mathrm{8}} {xdx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{A}\:+{B}\:{and}\:{A}−{B} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{A}^{\mathrm{2}} \:−{B}^{\mathrm{2}} \\ $$

Question Number 41675    Answers: 1   Comments: 1

Question Number 41672    Answers: 0   Comments: 1

find Σ_(k=0) ^n (1/(3k+1)) interms of H_n

$${find}\:\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\mathrm{1}}{\mathrm{3}{k}+\mathrm{1}}\:{interms}\:{of}\:{H}_{{n}} \\ $$

Question Number 41671    Answers: 0   Comments: 0

if p=6.4×10^4 and q=3.2×10^5 find the values of (i)p×q (ii)p+q write the answers in standard form

$$\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{p}}=\mathrm{6}.\mathrm{4}×\mathrm{10}^{\mathrm{4}} \:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{q}}=\mathrm{3}.\mathrm{2}×\mathrm{10}^{\mathrm{5}} \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{values}}\:\boldsymbol{\mathrm{of}} \\ $$$$\left(\boldsymbol{\mathrm{i}}\right)\boldsymbol{\mathrm{p}}×\boldsymbol{\mathrm{q}} \\ $$$$\left(\boldsymbol{\mathrm{ii}}\right)\boldsymbol{\mathrm{p}}+\boldsymbol{\mathrm{q}} \\ $$$$\boldsymbol{\mathrm{write}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{answers}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{standard}}\:\boldsymbol{\mathrm{form}} \\ $$

Question Number 41651    Answers: 2   Comments: 1

∫( 1+2x+3x^2 +4x^3 +.........) dx , (0<∣x∣<1)

$$\int\left(\:\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{3}} +.........\right)\:{dx}\:,\:\:\: \\ $$$$\left(\mathrm{0}<\mid{x}\mid<\mathrm{1}\right) \\ $$

Question Number 41642    Answers: 1   Comments: 0

n(n − 1)(n − 2)(n − 3) .... (n − r + 1) = ??

$$\mathrm{n}\left(\mathrm{n}\:−\:\mathrm{1}\right)\left(\mathrm{n}\:−\:\mathrm{2}\right)\left(\mathrm{n}\:−\:\mathrm{3}\right)\:....\:\left(\mathrm{n}\:−\:\mathrm{r}\:+\:\mathrm{1}\right)\:=\:?? \\ $$

Question Number 41634    Answers: 2   Comments: 1

Question Number 41622    Answers: 4   Comments: 9

let z_1 and z_2 the roots of x^2 −2x+2=0 1) calculate z_1 ^3 +z_2 ^3 then (1/z_1 ^3 ) +(1/z_2 ^3 ) 2) calculate z_1 ^4 +z_2 ^4 then (1/z_1 ^4 ) +(1/z_2 ^4 ) 3) let n from N simplify A_n = z_1 ^n +z_2 ^n and B_n = z_1 ^n −z_2 ^n 4) simplify S_n =Σ_(k=0) ^(n−1) (z_1 ^k +z_2 ^k )

$${let}\:{z}_{\mathrm{1}} \:{and}\:{z}_{\mathrm{2}} \:{the}\:{roots}\:{of}\:{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}=\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{z}_{\mathrm{1}} ^{\mathrm{3}} \:+{z}_{\mathrm{2}} ^{\mathrm{3}} \:\:\:{then}\:\:\frac{\mathrm{1}}{{z}_{\mathrm{1}} ^{\mathrm{3}} }\:+\frac{\mathrm{1}}{{z}_{\mathrm{2}} ^{\mathrm{3}} } \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{z}_{\mathrm{1}} ^{\mathrm{4}} \:+{z}_{\mathrm{2}} ^{\mathrm{4}} \:\:{then}\:\:\frac{\mathrm{1}}{{z}_{\mathrm{1}} ^{\mathrm{4}} }\:+\frac{\mathrm{1}}{{z}_{\mathrm{2}} ^{\mathrm{4}} } \\ $$$$\left.\mathrm{3}\right)\:{let}\:{n}\:{from}\:{N}\:\:{simplify} \\ $$$${A}_{{n}} =\:{z}_{\mathrm{1}} ^{{n}} \:+{z}_{\mathrm{2}} ^{{n}} \:\:\:\:\:\:\:{and}\:\:{B}_{{n}} =\:{z}_{\mathrm{1}} ^{{n}} \:−{z}_{\mathrm{2}} ^{{n}} \\ $$$$\left.\mathrm{4}\right)\:{simplify}\:\:{S}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\left({z}_{\mathrm{1}} ^{{k}} \:\:\:+{z}_{\mathrm{2}} ^{{k}} \right) \\ $$

Question Number 41620    Answers: 2   Comments: 1

Question Number 41616    Answers: 0   Comments: 0

Question Number 41627    Answers: 1   Comments: 2

Question Number 41787    Answers: 1   Comments: 0

Question Number 41783    Answers: 1   Comments: 0

Question Number 41606    Answers: 2   Comments: 0

4x^4 +16x^3 +24x^2 −9x−1=0 using any method. find real value of x that satisfy the polynomial

$$\mathrm{4}\boldsymbol{\mathrm{x}}^{\mathrm{4}} +\mathrm{16}\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\mathrm{24}\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{9}\boldsymbol{\mathrm{x}}−\mathrm{1}=\mathrm{0} \\ $$$$\boldsymbol{\mathrm{using}}\:\boldsymbol{\mathrm{any}}\:\boldsymbol{\mathrm{method}}.\:\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{real}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{x}}\:\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{satisfy}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{polynomial}} \\ $$

Question Number 41586    Answers: 2   Comments: 1

f(x)=(√(−3+(√((x+1)/(x−1))))) ∫f(x)=? ∫f^(−1) (x)=?

$${f}\left({x}\right)=\sqrt{−\mathrm{3}+\sqrt{\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}}} \\ $$$$\int{f}\left({x}\right)=? \\ $$$$\int{f}^{−\mathrm{1}} \left({x}\right)=? \\ $$

Question Number 41579    Answers: 1   Comments: 1

If u_(10) = ∫_( 0) ^(π/2) x^(10) sin x dx, then the value of u_(10) +90 u_8 is

$$\mathrm{If}\:\:{u}_{\mathrm{10}} =\:\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}{x}^{\mathrm{10}} \:\mathrm{sin}\:{x}\:{dx},\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$${u}_{\mathrm{10}} +\mathrm{90}\:{u}_{\mathrm{8}} \:\:\mathrm{is} \\ $$

Question Number 41578    Answers: 0   Comments: 0

If u_(10) = ∫_( 0) ^(π/2) x^(10) sin x dx, then the value of u_(10) +90 u_8 is

$$\mathrm{If}\:\:{u}_{\mathrm{10}} =\:\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}{x}^{\mathrm{10}} \:\mathrm{sin}\:{x}\:{dx},\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$${u}_{\mathrm{10}} +\mathrm{90}\:{u}_{\mathrm{8}} \:\:\mathrm{is} \\ $$

Question Number 41561    Answers: 2   Comments: 3

∫ (dx/(3sin(x) + 4cos(x)))

$$\int\:\frac{\mathrm{dx}}{\mathrm{3sin}\left(\mathrm{x}\right)\:+\:\mathrm{4cos}\left(\mathrm{x}\right)} \\ $$

Question Number 41577    Answers: 0   Comments: 0

If u_(10) = ∫_( 0) ^(π/2) x^(10) sin x dx, then the value of u_(10) +90 u_8 is

$$\mathrm{If}\:\:{u}_{\mathrm{10}} =\:\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}{x}^{\mathrm{10}} \:\mathrm{sin}\:{x}\:{dx},\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$${u}_{\mathrm{10}} +\mathrm{90}\:{u}_{\mathrm{8}} \:\:\mathrm{is} \\ $$

Question Number 41555    Answers: 5   Comments: 0

Question Number 41536    Answers: 3   Comments: 0

if y=(√(((1+sinx)/(1−sinx)) )) show that (dy/dx)=(1/(1−sinx))

$$\boldsymbol{\mathrm{if}}\:\boldsymbol{{y}}=\sqrt{\frac{\mathrm{1}+\boldsymbol{\mathrm{sin}{x}}}{\mathrm{1}−\boldsymbol{\mathrm{sin}{x}}}\:}\:\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}} \\ $$$$\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}=\frac{\mathrm{1}}{\mathrm{1}−\boldsymbol{\mathrm{sin}{x}}} \\ $$

Question Number 41534    Answers: 1   Comments: 0

Three chidren are playing the game of claping hands,the first child claping hands in every after 1sec,the second child clap hands in every after 10sec and the third child claps in every after 5sec. for how long do all three children will clap their hands together at the same time?

$$\boldsymbol{\mathrm{Three}}\:\boldsymbol{\mathrm{chidren}}\:\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{playing}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{game}} \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{claping}}\:\boldsymbol{\mathrm{hands}},\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{first}}\:\boldsymbol{\mathrm{child}}\:\boldsymbol{\mathrm{claping}}\:\boldsymbol{\mathrm{hands}} \\ $$$$\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{every}}\:\boldsymbol{\mathrm{after}}\:\mathrm{1}\boldsymbol{\mathrm{sec}},\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{second}}\: \\ $$$$\boldsymbol{\mathrm{child}}\:\boldsymbol{\mathrm{clap}}\:\boldsymbol{\mathrm{hands}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{every}}\:\boldsymbol{\mathrm{after}}\:\mathrm{10}\boldsymbol{\mathrm{sec}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{third}}\:\boldsymbol{\mathrm{child}}\:\boldsymbol{\mathrm{claps}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{every}}\:\boldsymbol{\mathrm{after}}\:\mathrm{5}\boldsymbol{\mathrm{sec}}.\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{long}}\:\boldsymbol{\mathrm{do}}\:\boldsymbol{\mathrm{all}} \\ $$$$\boldsymbol{\mathrm{three}}\:\boldsymbol{\mathrm{children}}\:\boldsymbol{\mathrm{will}}\:\boldsymbol{\mathrm{clap}}\:\boldsymbol{\mathrm{their}}\:\boldsymbol{\mathrm{hands}}\:\boldsymbol{\mathrm{together}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{same}}\:\boldsymbol{\mathrm{time}}? \\ $$

  Pg 1663      Pg 1664      Pg 1665      Pg 1666      Pg 1667      Pg 1668      Pg 1669      Pg 1670      Pg 1671      Pg 1672   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com