Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1667
Question Number 40952 Answers: 0 Comments: 1
Question Number 40948 Answers: 2 Comments: 1
Question Number 40939 Answers: 0 Comments: 1
Question Number 40930 Answers: 0 Comments: 1
Question Number 40928 Answers: 1 Comments: 0
Question Number 40920 Answers: 1 Comments: 0
$$\frac{{d}^{\:\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }={a}−{b}\left(\mathrm{1}−\frac{{l}}{\sqrt{{x}^{\mathrm{2}} +{l}^{\mathrm{2}} }}\right){x}\: \\ $$$${Find}\:{x}\left({t}\right)\:{if}\:{x}\left(\mathrm{0}\right)={x}_{\mathrm{0}} \:,\:{x}'\left(\mathrm{0}\right)=\mathrm{0}\:. \\ $$
Question Number 40918 Answers: 1 Comments: 0
Question Number 40917 Answers: 1 Comments: 0
Question Number 40911 Answers: 0 Comments: 7
Question Number 40910 Answers: 1 Comments: 0
Question Number 40906 Answers: 2 Comments: 1
$${f}\left({x}\right)\:=\:\mathrm{5}.\mathrm{687cosh}\left(\frac{{x}}{\mathrm{5}.\mathrm{687}}\right)−\mathrm{5}.\mathrm{687} \\ $$$${L}=\int_{-\mathrm{11}} ^{\mathrm{11}} \sqrt{\mathrm{1}+\left[{f}\:'\left({x}\right)\right]^{\mathrm{2}} }{dx} \\ $$
Question Number 40898 Answers: 2 Comments: 1
$${let}\:{u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\:\frac{{n}−{k}}{{n}−{k}+\mathrm{1}} \\ $$$${find}\:{a}\:{equivalent}\:{of}\:{u}_{{n}} \left({n}\rightarrow+\infty\right) \\ $$
Question Number 40897 Answers: 0 Comments: 1
$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{n}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} \left({n}+\mathrm{2}\right)} \\ $$
Question Number 40896 Answers: 0 Comments: 0
$${for}\:\mid{x}\mid<\mathrm{1}\:{prove}\:{that} \\ $$$$\frac{\mathrm{1}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{C}_{\mathrm{2}{n}} ^{{n}} }{\mathrm{4}^{{n}} }\:{x}^{\mathrm{2}{n}} \\ $$
Question Number 40895 Answers: 0 Comments: 0
$${prove}\:{that}\:{for}\:\mid{x}\mid<\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\sqrt{\mathrm{1}+{x}}}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{C}_{\mathrm{2}{n}} ^{{n}} }{\mathrm{4}^{{k}} }\:{x}^{\mathrm{2}{k}} \\ $$
Question Number 40893 Answers: 0 Comments: 0
$${let}\:{u}_{{k}} =\mathrm{1}−\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{{k}} }\right)^{{n}−\mathrm{1}} \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:\Sigma\:{u}_{{k}} {converges} \\ $$$$\left.\mathrm{2}\right){let}\:{f}\left({x}\right)=\mathrm{1}−\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{{x}} }\right)^{{n}−\mathrm{1}} \:{with}\:{x}\geqslant\mathrm{0} \\ $$$${prove}\:{that}\:\forall{p}\in{N} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{p}+\mathrm{1}} \:{u}_{{k}} \:\leqslant\int_{\mathrm{0}} ^{{p}+\mathrm{1}} {f}\left({x}\right){dx}\leqslant\sum_{{k}=\mathrm{0}} ^{{p}} \:{u}_{{k}} \\ $$
Question Number 40892 Answers: 0 Comments: 0
$${let}\:{B}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{x}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{y}−\mathrm{1}} {dt} \\ $$$${withx}>\mathrm{0}{and}\:{y}>\mathrm{0}\:{prove}\:{that} \\ $$$${B}\left({x},{y}\right)=\:\frac{\Gamma\left({x}\right).\Gamma\left({y}\right)}{\Gamma\left({x}+{y}\right)} \\ $$
Question Number 40891 Answers: 0 Comments: 1
$${let}\:{x}>\mathrm{0}\:{and}\:{y}>\mathrm{0}\:{and} \\ $$$${B}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{x}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{y}−\mathrm{1}} {dt} \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:{B}\left({x},{y}\right)={B}\left({y},{x}\right) \\ $$$$\left.\mathrm{2}\right){B}\left({x}+\mathrm{1},{y}\right)=\frac{{x}}{{y}}\:{B}\left({x},{y}+\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right){B}\left({x}+\mathrm{1},{y}\right)=\frac{{x}}{{x}+{y}}{B}\left({x},{y}\right) \\ $$$$\left.\mathrm{4}\right){B}\left({x},{n}+\mathrm{1}\right)=\frac{{n}!}{{x}\left({x}+\mathrm{1}\right)....\left({x}+{n}\right)} \\ $$$$\left.\mathrm{5}\right){B}\left({n},{p}\right)\:=\:\frac{\mathrm{1}}{\left({n}+{p}−\mathrm{1}\right){C}_{{n}+{p}−\mathrm{2}} ^{{p}−\mathrm{1}} } \\ $$
Question Number 40890 Answers: 0 Comments: 2
$$\left.\mathrm{1}\right){calculate}\:\int_{\frac{\mathrm{1}}{{n}+\mathrm{1}}} ^{\frac{\mathrm{1}}{{n}}} \left[\frac{\mathrm{1}}{{t}}−\left[\frac{\mathrm{1}}{{t}}\right]\right]{dt} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left[\frac{\mathrm{1}}{{t}}−\left[\frac{\mathrm{1}}{{t}}\right]\right]{dt}=\mathrm{1}−\gamma \\ $$$$\gamma\:{is}\:{constant}\:{number}\:{of}\:{euler} \\ $$
Question Number 40889 Answers: 1 Comments: 0
$${prove}?{that} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} }{{t}}{dt}\:=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$
Question Number 40888 Answers: 0 Comments: 0
$$\left.{prove}\:{that}\:\forall\xi\:\in\right]\mathrm{0},\pi\left[\right. \\ $$$$\mid\int_{\xi} ^{\pi} \left(\frac{{sint}}{{t}}\right)^{{n}} {dt}\mid\leqslant\pi\left(\frac{{sin}\xi}{\xi}\right)^{{n}} \:\:{n}\:{integr}\:{natural} \\ $$
Question Number 40887 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{tln}\left({t}\right)}{{t}^{\mathrm{2}} −\mathrm{1}}{dt} \\ $$
Question Number 40886 Answers: 0 Comments: 0
$${prove}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{t}^{\mathrm{2}{p}+\mathrm{1}} {ln}\left({t}\right)}{{t}^{\mathrm{2}} −\mathrm{1}}{dt}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{24}}\:−\frac{\mathrm{1}}{\mathrm{4}}\sum_{{k}=\mathrm{1}} ^{{p}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$
Question Number 40885 Answers: 0 Comments: 1
$${prove}\:{that} \\ $$$$\left.\mathrm{1}\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{t}^{{p}} {ln}\left({t}\right)}{{t}−\mathrm{1}}{dt}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−\sum_{{k}=\mathrm{1}} ^{{p}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{t}^{\mathrm{2}{p}} {ln}\left({t}\right)}{{t}^{\mathrm{2}} −\mathrm{1}}{dt}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:−\sum_{{k}=\mathrm{0}} ^{{p}−\mathrm{1}} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 40884 Answers: 2 Comments: 0
$$\left.\mathrm{1}\right)\:{fond}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({t}\right)}{{t}^{\mathrm{2}} −\mathrm{1}}{dt} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left({t}\right)}{{t}^{\mathrm{4}} −\mathrm{1}}{dt} \\ $$
Question Number 40883 Answers: 1 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{p}} }{{e}^{{t}} −\mathrm{1}}{dt}\:{with}\:{p}\in{N}^{\bigstar} \\ $$
Pg 1662 Pg 1663 Pg 1664 Pg 1665 Pg 1666 Pg 1667 Pg 1668 Pg 1669 Pg 1670 Pg 1671
Terms of Service
Privacy Policy
Contact: info@tinkutara.com