Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1667

Question Number 47182    Answers: 0   Comments: 3

calculate ∫_0 ^1 e^(−x) (√(1−(√x)))dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{x}} \sqrt{\mathrm{1}−\sqrt{{x}}}{dx}\: \\ $$

Question Number 41016    Answers: 1   Comments: 1

Question Number 41028    Answers: 1   Comments: 0

if 1/u = (√((x2 + y2 +z2))) then x∂u/∂x + y∂u/∂y + z∂u/∂z = ?

$${if}\:\mathrm{1}/{u}\:=\:\sqrt{\left({x}\mathrm{2}\:+\:{y}\mathrm{2}\:+{z}\mathrm{2}\right)} \\ $$$${then}\:{x}\partial{u}/\partial{x}\:+\:{y}\partial{u}/\partial{y}\:+\:{z}\partial{u}/\partial{z}\:=\:? \\ $$

Question Number 41009    Answers: 1   Comments: 1

Question Number 41003    Answers: 2   Comments: 0

The LCM and GCF of x,18 and 60 are 360 and 6 respectively. find the value of x

$$\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{LCM}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{GCF}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{{x}},\mathrm{18}\:\boldsymbol{\mathrm{and}}\:\mathrm{60} \\ $$$$\boldsymbol{\mathrm{are}}\:\mathrm{360}\:\boldsymbol{\mathrm{and}}\:\mathrm{6}\:\boldsymbol{\mathrm{respectively}}. \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{{x}} \\ $$

Question Number 40984    Answers: 0   Comments: 1

let f(x) =∫_0 ^∞ te^(−t^2 ) arctan(xt)dt 1) find a simple form of f(x) 2) calculate ∫_0 ^∞ te^(−t^2 ) arctantdt and ∫_0 ^∞ t e^(−t^2 ) arctan(2t)dt 3)let u_n =∫_0 ^∞ t e^(−t^2 ) arctan(nt)dt find lim_(n→+∞) u_n study the convergence of Σ u_n

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:{te}^{−{t}^{\mathrm{2}} } \:{arctan}\left({xt}\right){dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:{te}^{−{t}^{\mathrm{2}} } {arctantdt}\:{and} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{t}\:{e}^{−{t}^{\mathrm{2}} } \:{arctan}\left(\mathrm{2}{t}\right){dt} \\ $$$$\left.\mathrm{3}\right){let}\:{u}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:{t}\:{e}^{−{t}^{\mathrm{2}} } {arctan}\left({nt}\right){dt} \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} {u}_{{n}} \\ $$$${study}\:{the}\:{convergence}\:{of}\:\Sigma\:{u}_{{n}} \\ $$

Question Number 40975    Answers: 2   Comments: 0

Question Number 40974    Answers: 0   Comments: 0

X = (x_1 , x_2 , ..., x_n ), X∈P^n Does there exist a point in N-dimensions, such that the points and line length (from origin) are prime? That is, Σ_(i=1) ^n x_i ^2 =p^2 , p∈P

$${X}\:=\:\left({x}_{\mathrm{1}} ,\:{x}_{\mathrm{2}} ,\:...,\:{x}_{{n}} \right),\:\:\:\:{X}\in\mathbb{P}^{{n}} \\ $$$$\: \\ $$$$\mathrm{Does}\:\mathrm{there}\:\mathrm{exist}\:\mathrm{a}\:\mathrm{point}\:\mathrm{in}\:\mathrm{N}-\mathrm{dimensions}, \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{points}\:\mathrm{and}\:\mathrm{line}\:\mathrm{length}\:\left(\mathrm{from}\:\mathrm{origin}\right) \\ $$$$\mathrm{are}\:\mathrm{prime}? \\ $$$$\: \\ $$$$\mathrm{That}\:\mathrm{is}, \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{x}_{{i}} ^{\mathrm{2}} ={p}^{\mathrm{2}} ,\:\:\:{p}\in\mathbb{P} \\ $$

Question Number 40965    Answers: 1   Comments: 0

Question Number 40961    Answers: 1   Comments: 0

Question Number 40960    Answers: 0   Comments: 1

Question Number 40952    Answers: 0   Comments: 1

Question Number 40948    Answers: 2   Comments: 1

Question Number 40939    Answers: 0   Comments: 1

Question Number 40930    Answers: 0   Comments: 1

Question Number 40928    Answers: 1   Comments: 0

Question Number 40920    Answers: 1   Comments: 0

(d^( 2) x/dt^2 )=a−b(1−(l/(√(x^2 +l^2 ))))x Find x(t) if x(0)=x_0 , x′(0)=0 .

$$\frac{{d}^{\:\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }={a}−{b}\left(\mathrm{1}−\frac{{l}}{\sqrt{{x}^{\mathrm{2}} +{l}^{\mathrm{2}} }}\right){x}\: \\ $$$${Find}\:{x}\left({t}\right)\:{if}\:{x}\left(\mathrm{0}\right)={x}_{\mathrm{0}} \:,\:{x}'\left(\mathrm{0}\right)=\mathrm{0}\:. \\ $$

Question Number 40918    Answers: 1   Comments: 0

Question Number 40917    Answers: 1   Comments: 0

Question Number 40911    Answers: 0   Comments: 7

Question Number 40910    Answers: 1   Comments: 0

Question Number 40906    Answers: 2   Comments: 1

f(x) = 5.687cosh((x/(5.687)))−5.687 L=∫_(-11) ^(11) (√(1+[f ′(x)]^2 ))dx

$${f}\left({x}\right)\:=\:\mathrm{5}.\mathrm{687cosh}\left(\frac{{x}}{\mathrm{5}.\mathrm{687}}\right)−\mathrm{5}.\mathrm{687} \\ $$$${L}=\int_{-\mathrm{11}} ^{\mathrm{11}} \sqrt{\mathrm{1}+\left[{f}\:'\left({x}\right)\right]^{\mathrm{2}} }{dx} \\ $$

Question Number 40898    Answers: 2   Comments: 1

let u_n =Σ_(k=1) ^(n−1) ((n−k)/(n−k+1)) find a equivalent of u_n (n→+∞)

$${let}\:{u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\:\frac{{n}−{k}}{{n}−{k}+\mathrm{1}} \\ $$$${find}\:{a}\:{equivalent}\:{of}\:{u}_{{n}} \left({n}\rightarrow+\infty\right) \\ $$

Question Number 40897    Answers: 0   Comments: 1

calculate Σ_(n=1) ^∞ (n/((n+1)^2 (n+2)))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{n}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} \left({n}+\mathrm{2}\right)} \\ $$

Question Number 40896    Answers: 0   Comments: 0

for ∣x∣<1 prove that (1/(√(1−x^2 ))) =Σ_(n=0) ^∞ (C_(2n) ^n /4^n ) x^(2n)

$${for}\:\mid{x}\mid<\mathrm{1}\:{prove}\:{that} \\ $$$$\frac{\mathrm{1}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{C}_{\mathrm{2}{n}} ^{{n}} }{\mathrm{4}^{{n}} }\:{x}^{\mathrm{2}{n}} \\ $$

Question Number 40895    Answers: 0   Comments: 0

prove that for ∣x∣<1 (1/(√(1+x))) =Σ_(n=0) ^∞ (((−1)^n C_(2n) ^n )/4^k ) x^(2k)

$${prove}\:{that}\:{for}\:\mid{x}\mid<\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\sqrt{\mathrm{1}+{x}}}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{C}_{\mathrm{2}{n}} ^{{n}} }{\mathrm{4}^{{k}} }\:{x}^{\mathrm{2}{k}} \\ $$

  Pg 1662      Pg 1663      Pg 1664      Pg 1665      Pg 1666      Pg 1667      Pg 1668      Pg 1669      Pg 1670      Pg 1671   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com