Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1664

Question Number 41962    Answers: 1   Comments: 1

A student holding a 324Hz tuning fork approaches a wall at a speed of 6ms^(−1) .The speed of sound in air is 336ms^(−1) .What frequency will the student detect from waves omitted from the fork and waves coming from the wall?

$${A}\:{student}\:{holding}\:{a}\:\mathrm{324}{Hz}\:{tuning} \\ $$$${fork}\:{approaches}\:{a}\:{wall}\:{at}\:{a}\:{speed} \\ $$$${of}\:\mathrm{6}{ms}^{−\mathrm{1}} .{The}\:{speed}\:{of}\:{sound}\:{in}\:{air} \\ $$$${is}\:\mathrm{336}{ms}^{−\mathrm{1}} .{What}\:{frequency}\:{will} \\ $$$${the}\:{student}\:{detect}\:{from}\:{waves} \\ $$$${omitted}\:{from}\:{the}\:{fork}\:{and}\:{waves} \\ $$$${coming}\:{from}\:{the}\:{wall}? \\ $$

Question Number 41902    Answers: 1   Comments: 0

tan3θ tan2θ =1 find the general^(solution......)

$$\mathrm{tan3}\theta\:\mathrm{tan2}\theta\:=\mathrm{1} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{general}\:^{\mathrm{solution}......} \\ $$

Question Number 41921    Answers: 2   Comments: 0

Find x : 625^(x − 5) = 200((√x))^3

$$\mathrm{Find}\:\mathrm{x}\::\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{625}^{\mathrm{x}\:−\:\mathrm{5}} \:=\:\mathrm{200}\left(\sqrt{\mathrm{x}}\right)^{\mathrm{3}} \\ $$

Question Number 41896    Answers: 2   Comments: 1

∫_(−1/2) ^(1/2) [ (((x+1)/(x−1)))^2 +(((x−1)/(x+1)))^2 −2]^(1/2) dx =

$$\underset{−\mathrm{1}/\mathrm{2}} {\overset{\mathrm{1}/\mathrm{2}} {\int}}\:\:\left[\:\left(\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}\right)^{\mathrm{2}} +\left(\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right)^{\mathrm{2}} −\mathrm{2}\right]^{\mathrm{1}/\mathrm{2}} {dx}\:= \\ $$

Question Number 41895    Answers: 1   Comments: 1

(√3)sin3x−cos3x+2sin((9x)/4)=4

$$\sqrt{\mathrm{3}}{sin}\mathrm{3}{x}−{cos}\mathrm{3}{x}+\mathrm{2}{sin}\frac{\mathrm{9}{x}}{\mathrm{4}}=\mathrm{4} \\ $$

Question Number 41888    Answers: 0   Comments: 5

The length of mercury column in a mercury-in-glass thermometer is 4cm at triple point.What is the length of the column when the scale indicates temperature of 560K.

$${The}\:{length}\:{of}\:{mercury}\:{column}\:{in} \\ $$$${a}\:{mercury}-{in}-{glass}\:{thermometer} \\ $$$${is}\:\mathrm{4}{cm}\:{at}\:{triple}\:{point}.{What}\:{is}\:{the} \\ $$$${length}\:{of}\:{the}\:{column}\:{when}\:{the} \\ $$$${scale}\:{indicates}\:{temperature}\:{of} \\ $$$$\mathrm{560}{K}. \\ $$

Question Number 41887    Answers: 1   Comments: 0

x+(√y)+xy=82 (√x)+y+(√(xy))=16 Find x and y by khaled.k

$$\mathrm{x}+\sqrt{\mathrm{y}}+\mathrm{xy}=\mathrm{82} \\ $$$$\sqrt{\mathrm{x}}+\mathrm{y}+\sqrt{\mathrm{xy}}=\mathrm{16} \\ $$$$\mathrm{Find}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$$$\mathrm{by}\:\mathrm{khaled}.\mathrm{k} \\ $$

Question Number 41879    Answers: 1   Comments: 0

If a fraction is added to its denominator , it reduces to (1/2) and when the same fraction added to numerator, it also reduces to (2/3) (a) what is the fraction (b) find the square root such that the result of the fraction is less than 1

$$\mathrm{If}\:\mathrm{a}\:\mathrm{fraction}\:\mathrm{is}\:\mathrm{added}\:\mathrm{to}\:\mathrm{its}\:\mathrm{denominator}\:,\:\:\mathrm{it}\:\mathrm{reduces}\:\mathrm{to}\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{and}\: \\ $$$$\mathrm{when}\:\mathrm{the}\:\mathrm{same}\:\mathrm{fraction}\:\mathrm{added}\:\mathrm{to}\:\mathrm{numerator},\:\mathrm{it}\:\mathrm{also}\:\mathrm{reduces}\:\mathrm{to}\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{fraction} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{square}\:\mathrm{root}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{result}\:\mathrm{of}\:\mathrm{the}\:\mathrm{fraction}\:\mathrm{is}\:\mathrm{less} \\ $$$$\mathrm{than}\:\mathrm{1} \\ $$$$ \\ $$

Question Number 41878    Answers: 1   Comments: 0

(√3)sin3x−cos3x+2sin((9x)/4)=2

$$\sqrt{\mathrm{3}}{sin}\mathrm{3}{x}−{cos}\mathrm{3}{x}+\mathrm{2}{sin}\frac{\mathrm{9}{x}}{\mathrm{4}}=\mathrm{2} \\ $$

Question Number 41877    Answers: 1   Comments: 0

The tens digit of a two digit number is 3 greater than the units digit. When the digits are reversed, the number is reduced by 27. what is the number ?

$$\mathrm{The}\:\mathrm{tens}\:\mathrm{digit}\:\mathrm{of}\:\mathrm{a}\:\mathrm{two}\:\mathrm{digit}\:\mathrm{number}\:\mathrm{is}\:\mathrm{3}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{the}\:\mathrm{units}\:\mathrm{digit}. \\ $$$$\mathrm{When}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{are}\:\mathrm{reversed},\:\mathrm{the}\:\mathrm{number}\:\mathrm{is}\:\mathrm{reduced}\:\mathrm{by}\:\mathrm{27}. \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{number}\:? \\ $$

Question Number 41870    Answers: 0   Comments: 0

Question Number 41869    Answers: 0   Comments: 0

Question Number 41868    Answers: 0   Comments: 0

Question Number 41867    Answers: 0   Comments: 0

Question Number 41866    Answers: 1   Comments: 0

Question Number 41860    Answers: 0   Comments: 2

(1,2,3,........100)are given number find the value of Σ(1×2)

$$\left(\mathrm{1},\mathrm{2},\mathrm{3},........\mathrm{100}\right){are}\:{given}\:{number} \\ $$$${find}\:{the}\:{value}\:{of}\:\Sigma\left(\mathrm{1}×\mathrm{2}\right) \\ $$

Question Number 41858    Answers: 0   Comments: 3

i have fever...so brain activity got reduced...

$${i}\:{have}\:{fever}...{so}\:{brain}\:{activity}\:{got}\:{reduced}... \\ $$

Question Number 41856    Answers: 1   Comments: 0

Question Number 41855    Answers: 0   Comments: 1

lim_(x→+∞ ) ((n!)/(ln (1+n!))) find the limit

$$\underset{{x}\rightarrow+\infty\:\:} {\mathrm{lim}}\frac{\mathrm{n}!}{\mathrm{ln}\:\left(\mathrm{1}+\mathrm{n}!\right)} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{limit} \\ $$

Question Number 41854    Answers: 0   Comments: 0

1)calculate ∫_0 ^1 ln(1+x+x^2 +x^3 )dx 2)then find the value of ∫_0 ^1 ln( 1−x^5 ) dx 3) find the value of Σ_(n=1) ^∞ (1/(n(5n+1))) .

$$\left.\mathrm{1}\right){calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \:+{x}^{\mathrm{3}} \right){dx} \\ $$$$\left.\mathrm{2}\right){then}\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\:\mathrm{1}−{x}^{\mathrm{5}} \right)\:{dx} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{{n}\left(\mathrm{5}{n}+\mathrm{1}\right)}\:. \\ $$$$ \\ $$$$ \\ $$

Question Number 41851    Answers: 0   Comments: 2

Question Number 41847    Answers: 1   Comments: 0

let f(x) = ∫_0 ^(π/4) (dt/(x +tan(t))) 1) find anoher expression off (x) 2) calculate ∫_0 ^(π/4) (dt/(2+tan(t))) and A(θ) = ∫_0 ^(π/4) (dt/(sinθ+tant)) 3) calculate ∫_0 ^(π/4) (dt/((1+tant)^2 ))

$${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\:\frac{{dt}}{{x}\:+{tan}\left({t}\right)} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{anoher}\:{expression}\:{off}\:\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{dt}}{\mathrm{2}+{tan}\left({t}\right)}\:\:\:{and}\:\:{A}\left(\theta\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\frac{{dt}}{{sin}\theta+{tant}} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{tant}\right)^{\mathrm{2}} } \\ $$

Question Number 41846    Answers: 1   Comments: 0

find ∫ (dx/((√(1+x^2 )) +(√(1−x^2 ))))

$${find}\:\:\int\:\:\:\:\:\frac{{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} \:}\:\:+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$

Question Number 41845    Answers: 1   Comments: 0

1)find ∫ (x/((√(1+x)) +(√(1−x)))) dx 2) calculate ∫_1 ^3 (x/((√(1+x)) +(√(1−x)))) dx

$$\left.\mathrm{1}\right){find}\:\:\:\:\int\:\:\:\:\:\:\:\:\:\frac{{x}}{\sqrt{\mathrm{1}+{x}}\:+\sqrt{\mathrm{1}−{x}}}\:{dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\:\:\:\frac{{x}}{\sqrt{\mathrm{1}+{x}}\:+\sqrt{\mathrm{1}−{x}}}\:{dx} \\ $$

Question Number 41848    Answers: 0   Comments: 3

let f(a) = ∫_0 ^(π/2) (dx/(1+asinx)) with a∈R 1) find a simple form of f(a) 2) calculate ∫_0 ^(π/2) (dx/(1+sinx)) and ∫_0 ^(π/2) (dx/(1+2sinx)) 3) find the value of ∫_0 ^(π/2) ((cosx)/((1+asinx)^2 ))dx 4) find the value of ∫_0 ^(π/2) ((cosx)/((1+sinx)^2 ))dx and ∫_0 ^(π/2) ((cosx)/((1+2sinx)^2 ))dx

$${let}\:{f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{dx}}{\mathrm{1}+{asinx}}\:\:\:{with}\:{a}\in{R} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\mathrm{1}+{sinx}}\:{and}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dx}}{\mathrm{1}+\mathrm{2}{sinx}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{cosx}}{\left(\mathrm{1}+{asinx}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{4}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{cosx}}{\left(\mathrm{1}+{sinx}\right)^{\mathrm{2}} }{dx}\:{and}\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{cosx}}{\left(\mathrm{1}+\mathrm{2}{sinx}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 42310    Answers: 1   Comments: 1

  Pg 1659      Pg 1660      Pg 1661      Pg 1662      Pg 1663      Pg 1664      Pg 1665      Pg 1666      Pg 1667      Pg 1668   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com