Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1663
Question Number 35589 Answers: 0 Comments: 1
$${let}\:\:\:{I}\:\:=\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{tx}} \:\mid{sint}\mid{dt}\:\:{with}\:{x}>\mathrm{0} \\ $$$${find}\:{the}\:{value}\:{of}\:{I}\:. \\ $$
Question Number 35588 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\:\frac{{sinx}\:{cos}\left({cosx}\right)}{\mathrm{1}+\mathrm{2}{sin}\left({cosx}\right)}{dx} \\ $$
Question Number 35587 Answers: 0 Comments: 0
$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{e}^{−{t}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:{with}\:{t}\geqslant\mathrm{0} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({t}\right)\:. \\ $$
Question Number 35586 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\: \\ $$$${f}\left(\alpha\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{arctan}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:{with}\:\alpha\:{from}\:{R}\:. \\ $$
Question Number 35585 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:{sin}\left({cost}\right){dt} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$
Question Number 35584 Answers: 0 Comments: 0
$${let}\:\:{f}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{arctan}\left({e}^{−{tx}^{\mathrm{2}} } \right)}{{x}^{\mathrm{2}} }\:{dx}\:{with}\:{t}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{study}\:\:{the}\:{existence}\:{of}\:\:{f}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({t}\right) \\ $$
Question Number 35583 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} \:\sqrt{{x}−{sinx}}\:{dx} \\ $$
Question Number 35582 Answers: 0 Comments: 0
$${let}\:{g}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}+{sinx}}\:\:\:\:,\:\mathrm{2}\pi\:{periodic}\:{odd} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\:. \\ $$
Question Number 35581 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)\:=\:\:\frac{\mathrm{3}}{\mathrm{1}+\mathrm{2}{cosx}}\:\:,\:\mathrm{2}\pi\:{periodic}\:{even} \\ $$$${developp}\:{f}\:\:{at}\:{fourier}\:{serie}. \\ $$$$ \\ $$
Question Number 35580 Answers: 0 Comments: 0
$${if}\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{cosx}}\:=\:\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:{a}_{{n}} \:{cos}\left({nx}\right)\:\:{calculate}\:{a}_{\mathrm{0}} \\ $$$${and}\:{a}_{{n}} \\ $$
Question Number 35579 Answers: 0 Comments: 0
$$\left({u}_{{n}} \right)\:{is}\:{a}\:{arithmetic}\:{sequence}\:{with}\:{u}_{\mathrm{0}} =\mathrm{1}\:{and} \\ $$$${u}_{\mathrm{5}} =\mathrm{11}\:\:\:\:\: \\ $$$$\left.\mathrm{1}\right)\:\:{find}\:{the}\:{value}\:{of}\:\:\:{S}_{{n}} \:\:=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\:\frac{\mathrm{1}}{{u}_{{k}} ^{\mathrm{2}} } \\ $$$${and}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\:{W}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{{u}_{{k}−\mathrm{1}} .\:{u}_{{k}+\mathrm{1}} } \\ $$$${and}\:{lim}_{{n}\rightarrow+\infty} \:{W}_{{n}} \:. \\ $$
Question Number 35567 Answers: 0 Comments: 2
Question Number 35562 Answers: 0 Comments: 2
$$\mathrm{Is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{backwards}\:``\Rightarrow''? \\ $$
Question Number 35553 Answers: 0 Comments: 0
Question Number 35551 Answers: 0 Comments: 1
Question Number 35550 Answers: 0 Comments: 0
Question Number 35549 Answers: 0 Comments: 1
Question Number 35548 Answers: 0 Comments: 0
Question Number 35547 Answers: 0 Comments: 0
Question Number 35546 Answers: 0 Comments: 0
Question Number 35545 Answers: 0 Comments: 0
Question Number 35544 Answers: 0 Comments: 1
Question Number 35543 Answers: 0 Comments: 0
Question Number 35541 Answers: 0 Comments: 3
Question Number 35537 Answers: 1 Comments: 0
Question Number 35534 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{9}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{7}=\mathrm{0}\:\mathrm{are}\:\mathrm{2}\:\mathrm{more} \\ $$$$\mathrm{than}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0},\:\mathrm{then} \\ $$$$\mathrm{4}{a}−\mathrm{2}{b}+{c}\:\:\:\mathrm{can}\:\mathrm{be} \\ $$
Pg 1658 Pg 1659 Pg 1660 Pg 1661 Pg 1662 Pg 1663 Pg 1664 Pg 1665 Pg 1666 Pg 1667
Terms of Service
Privacy Policy
Contact: info@tinkutara.com