let f(a) = ∫_(−∞) ^(+∞) cos(ax^2 )dx with a>0
1) calculate f(a) interms of a
) calculate ∫_(−∞) ^(+∞) cos(2x^2 )dx
3) find the value of ∫_(−∞) ^(+∞) cos(x^2 +x+1)dx .
let f(x) = ∫_(−∞) ^(+∞) ((cos(xt))/((t−i)^2 )) dt
1) let R =Re(f(x)) and I =Im(f(x)) extract R and I
2) calculate R and I
3) conclude the value of f(x)
4) calculate ∫_(−∞) ^(+∞) ((cos(2t))/((t−i)^2 ))dt
5) let u_n = ∫_(−∞) ^(+∞) ((cos((t/n)))/((t−i)^2 ))dt (n natral integer not o)
find lim_(n→+∞) u_n and study the convergence of Σu_n
Let P be an interior point of a triangle
ABC and AP,BP,CP meet the sides BC,
CA,AB in D,E,F respectively. Show
that ((AP)/(PD))= ((AF)/(FB)) + ((AE)/(EC)) .