Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1663

Question Number 42045    Answers: 0   Comments: 2

i have some thing to say...in this platform several people/students/others post questions..others take promt action to solve the problems.. after the problem got solved..the person/students who post questions never attend or see the answer even do not clarify whether the answer is right or wrong...or whether he/she got understood the method...so pls show your courtsey otherwise your problem remain a problem and nobody bother to solve it...Than you all

$${i}\:{have}\:{some}\:{thing}\:{to}\:{say}...{in}\:{this}\:{platform}\:\:{several} \\ $$$${people}/{students}/{others}\:{post}\:{questions}..{others} \\ $$$${take}\:{promt}\:{action}\:{to}\:{solve}\:{the}\:{problems}.. \\ $$$${after}\:{the}\:{problem}\:{got}\:{solved}..{the}\:{person}/{students} \\ $$$${who}\:{post}\:{questions}\:{never}\:{attend}\:{or}\:{see}\:{the}\:{answer} \\ $$$${even}\:{do}\:{not}\:{clarify}\:{whether}\:{the}\:{answer}\:{is}\:{right} \\ $$$${or}\:{wrong}...{or}\:{whether}\:{he}/{she}\:{got}\:{understood}\:{the} \\ $$$${method}...{so}\:{pls}\:{show}\:{your}\:{courtsey}\:{otherwise} \\ $$$${your}\:{problem}\:{remain}\:{a}\:{problem}\:{and}\:{nobody}\:{bother} \\ $$$${to}\:{solve}\:{it}...{Than}\:{you}\:{all} \\ $$

Question Number 42036    Answers: 0   Comments: 13

State the phase shift, the amplitude and draw the graph. (a) g(θ) = (3/4) sin(2θ + π) (b) f(θ) = 1 + (3/4) sin(2θ + π) (c) f(θ) = 4θ

$$\mathrm{State}\:\mathrm{the}\:\mathrm{phase}\:\mathrm{shift},\:\:\mathrm{the}\:\mathrm{amplitude}\:\mathrm{and}\:\mathrm{draw}\:\mathrm{the}\:\mathrm{graph}. \\ $$$$\left(\mathrm{a}\right)\:\:\mathrm{g}\left(\theta\right)\:=\:\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{sin}\left(\mathrm{2}\theta\:+\:\pi\right) \\ $$$$\left(\mathrm{b}\right)\:\:\mathrm{f}\left(\theta\right)\:=\:\mathrm{1}\:+\:\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{sin}\left(\mathrm{2}\theta\:+\:\pi\right) \\ $$$$\left(\mathrm{c}\right)\:\:\mathrm{f}\left(\theta\right)\:=\:\mathrm{4}\theta \\ $$$$ \\ $$

Question Number 42030    Answers: 4   Comments: 1

x+(1/x)=5 x^5 +(1/x^5 )=?

$$\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}=\mathrm{5}\:\:\:\:\mathrm{x}^{\mathrm{5}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{5}} }=? \\ $$

Question Number 42029    Answers: 1   Comments: 0

Question Number 42025    Answers: 0   Comments: 2

A man,near point is 90cm from his eyes and his far point is 3cm. What type of eye defect has he? If he is to read a book at 25cm and see distant object clearly,what type and power of lenses will you recommend for him?

$${A}\:{man},{near}\:{point}\:{is}\:\mathrm{90}{cm}\:{from} \\ $$$${his}\:{eyes}\:{and}\:{his}\:{far}\:{point}\:{is}\:\mathrm{3}{cm}. \\ $$$${What}\:{type}\:{of}\:{eye}\:{defect}\:{has}\:{he}? \\ $$$${If}\:{he}\:{is}\:{to}\:{read}\:{a}\:{book}\:{at}\:\mathrm{25}{cm}\:{and} \\ $$$${see}\:{distant}\:{object}\:{clearly},{what}\:{type} \\ $$$${and}\:{power}\:{of}\:{lenses}\:{will}\:{you} \\ $$$${recommend}\:{for}\:{him}? \\ $$$$ \\ $$

Question Number 42020    Answers: 0   Comments: 0

let S_n (x)=Σ_(k=1) ^n (x^k /(√k)) find a equivalent of S_n (x) when n→+∞

$${let}\:\:{S}_{{n}} \left({x}\right)=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{{x}^{{k}} }{\sqrt{{k}}} \\ $$$${find}\:{a}\:{equivalent}\:{of}\:{S}_{{n}} \left({x}\right)\:{when}\:{n}\rightarrow+\infty \\ $$

Question Number 42019    Answers: 1   Comments: 3

find x: 2^x + 3^x = 13

$$\mathrm{find}\:\mathrm{x}:\:\:\:\:\:\mathrm{2}^{\mathrm{x}} \:+\:\mathrm{3}^{\mathrm{x}} \:=\:\mathrm{13} \\ $$

Question Number 42012    Answers: 2   Comments: 0

Solve : (du/dt) = ((3u−7t)/(−7u+3t))

$$\mathrm{Solve}\:: \\ $$$$\frac{{d}\mathrm{u}}{{d}\mathrm{t}}\:=\:\frac{\mathrm{3u}−\mathrm{7t}}{−\mathrm{7u}+\mathrm{3t}} \\ $$

Question Number 42009    Answers: 1   Comments: 0

if (a+bω+cω^2 )+(aω+bω^2 +c)^2 +(aω^2 +b+cω)^2 =0 then prove that a=c or a+c=2b

$$\mathrm{if}\:\left(\mathrm{a}+\mathrm{b}\omega+\mathrm{c}\omega^{\mathrm{2}} \right)+\left(\mathrm{a}\omega+\mathrm{b}\omega^{\mathrm{2}} +\mathrm{c}\right)^{\mathrm{2}} +\left(\mathrm{a}\omega^{\mathrm{2}} +\mathrm{b}+\mathrm{c}\omega\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{a}=\mathrm{c}\:\:\mathrm{or}\:\:\:\mathrm{a}+\mathrm{c}=\mathrm{2b} \\ $$

Question Number 42007    Answers: 2   Comments: 0

Question Number 41998    Answers: 1   Comments: 0

lim_(x→∞) ((x + cos x)/(x + sin x))

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{{x}\:+\:\mathrm{cos}\:{x}}{{x}\:+\:\mathrm{sin}\:{x}} \\ $$

Question Number 41989    Answers: 2   Comments: 1

Question Number 41985    Answers: 1   Comments: 1

Prove e^x ≥x+1 ∀x∈R in as many ways as you can show

$$\mathrm{Prove}\:{e}^{{x}} \geqslant{x}+\mathrm{1}\:\forall{x}\in\mathbb{R}\:\mathrm{in}\:\mathrm{as}\:\mathrm{many}\:\mathrm{ways} \\ $$$$\mathrm{as}\:\mathrm{you}\:\mathrm{can}\:\mathrm{show} \\ $$

Question Number 41984    Answers: 2   Comments: 7

solve simultaneously: 2(√k) + h = 9 ....... (i) k + 2(√h) = 3 ....... (ii)

$$\mathrm{solve}\:\mathrm{simultaneously}:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\sqrt{\mathrm{k}}\:\:+\:\mathrm{h}\:=\:\mathrm{9}\:\:\:.......\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{k}\:+\:\mathrm{2}\sqrt{\mathrm{h}}\:\:=\:\mathrm{3}\:\:.......\:\left(\mathrm{ii}\right) \\ $$

Question Number 41966    Answers: 1   Comments: 0

Question Number 41964    Answers: 1   Comments: 10

Prof Kintush has a near point of 45cm and his far point is infinity. What type of lens and focal length should be recommended for his normal reading?

$${Prof}\:{Kintush}\:{has}\:{a}\:{near}\:{point}\:{of} \\ $$$$\mathrm{45}{cm}\:{and}\:{his}\:{far}\:{point}\:{is}\:{infinity}. \\ $$$${What}\:{type}\:{of}\:{lens}\:{and}\:{focal}\:{length} \\ $$$${should}\:{be}\:{recommended}\:{for}\:{his} \\ $$$${normal}\:{reading}? \\ $$

Question Number 41958    Answers: 1   Comments: 0

{ ((x^(√y) +y^(√x) =((49)/(48)))),(((√x)+(√y)=(7/2))) :} find x and y k.k

$$\begin{cases}{\mathrm{x}^{\sqrt{\mathrm{y}}} +\mathrm{y}^{\sqrt{\mathrm{x}}} =\frac{\mathrm{49}}{\mathrm{48}}}\\{\sqrt{\mathrm{x}}+\sqrt{\mathrm{y}}=\frac{\mathrm{7}}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{find}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$$$\mathrm{k}.\mathrm{k} \\ $$

Question Number 41957    Answers: 1   Comments: 1

Question Number 41913    Answers: 1   Comments: 0

let f(a) = ∫_0 ^π (x/(1+acosx))dx 1) find f(a) 2) calculate ∫_0 ^π (x/(1+2cosx))dx and ∫_0 ^π (x/(1−2cosx))dx 3) calculate ∫_0 ^π ((xcosx)/((1+acosx)^2 ))dx 4) find the value of ∫_0 ^π ((xcosx)/((1+2cosx)^2 ))dx .

$${let}\:{f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{x}}{\mathrm{1}+{acosx}}{dx} \\ $$$$\left.\mathrm{1}\right)\:{find}\:\:{f}\left({a}\right)\: \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{x}}{\mathrm{1}+\mathrm{2}{cosx}}{dx}\:{and}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{x}}{\mathrm{1}−\mathrm{2}{cosx}}{dx} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{xcosx}}{\left(\mathrm{1}+{acosx}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{4}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{xcosx}}{\left(\mathrm{1}+\mathrm{2}{cosx}\right)^{\mathrm{2}} }{dx}\:. \\ $$

Question Number 41912    Answers: 2   Comments: 0

The estimated time for Abu and Ali to repair a faulty car is six hours. If Abu used 10 hours to repair the car, how many hours will Ali use to repair the car?

$$\mathrm{The}\:\mathrm{estimated}\:\mathrm{time}\:\mathrm{for}\:\mathrm{Abu}\:\mathrm{and}\:\mathrm{Ali}\:\mathrm{to}\:\mathrm{repair}\:\mathrm{a} \\ $$$$\mathrm{faulty}\:\mathrm{car}\:\mathrm{is}\:\mathrm{six}\:\mathrm{hours}.\:\mathrm{If}\:\mathrm{Abu}\:\mathrm{used}\:\mathrm{10}\:\mathrm{hours}\:\mathrm{to} \\ $$$$\mathrm{repair}\:\mathrm{the}\:\mathrm{car},\:\mathrm{how}\:\mathrm{many}\:\mathrm{hours}\:\mathrm{will}\:\mathrm{Ali}\:\mathrm{use}\:\mathrm{to}\:\mathrm{repair} \\ $$$$\mathrm{the}\:\mathrm{car}? \\ $$

Question Number 41911    Answers: 2   Comments: 5

h(x)=(√(sin^4 x+cos^4 x−2msinxcosx)) Find all the values of the parameter m for the funtion denined on R

$${h}\left({x}\right)=\sqrt{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}−\mathrm{2}{msinxcosx}} \\ $$$${Find}\:{all}\:{the}\:{values}\:{of}\:{the}\:{parameter}\:{m}\:{for}\:{the}\:{funtion}\:{denined}\:{on}\:{R} \\ $$$$ \\ $$

Question Number 41906    Answers: 0   Comments: 1

A concave lens of focal length 60cm is made of material whose refractive index for red light is 1.641 and refractive index for blue light is 1.659.That for white light is 1.65.It is combined with a convex lens of dispersive power 0.0173 to form an achromatic doublet. Calculate the focal length of the achromatic lens.

$${A}\:{concave}\:{lens}\:{of}\:{focal}\:{length}\:\mathrm{60}{cm} \\ $$$${is}\:{made}\:{of}\:{material}\:{whose} \\ $$$${refractive}\:{index}\:{for}\:{red}\:{light}\:{is} \\ $$$$\mathrm{1}.\mathrm{641}\:{and}\:{refractive}\:{index}\:{for}\:{blue} \\ $$$${light}\:{is}\:\mathrm{1}.\mathrm{659}.{That}\:{for}\:{white}\:{light} \\ $$$${is}\:\mathrm{1}.\mathrm{65}.{It}\:{is}\:{combined}\:{with}\:{a}\:{convex} \\ $$$${lens}\:{of}\:{dispersive}\:{power}\:\mathrm{0}.\mathrm{0173}\:{to} \\ $$$${form}\:{an}\:{achromatic}\:{doublet}. \\ $$$${Calculate}\:{the}\:{focal}\:{length}\:{of}\:{the} \\ $$$${achromatic}\:{lens}. \\ $$

Question Number 41962    Answers: 1   Comments: 1

A student holding a 324Hz tuning fork approaches a wall at a speed of 6ms^(−1) .The speed of sound in air is 336ms^(−1) .What frequency will the student detect from waves omitted from the fork and waves coming from the wall?

$${A}\:{student}\:{holding}\:{a}\:\mathrm{324}{Hz}\:{tuning} \\ $$$${fork}\:{approaches}\:{a}\:{wall}\:{at}\:{a}\:{speed} \\ $$$${of}\:\mathrm{6}{ms}^{−\mathrm{1}} .{The}\:{speed}\:{of}\:{sound}\:{in}\:{air} \\ $$$${is}\:\mathrm{336}{ms}^{−\mathrm{1}} .{What}\:{frequency}\:{will} \\ $$$${the}\:{student}\:{detect}\:{from}\:{waves} \\ $$$${omitted}\:{from}\:{the}\:{fork}\:{and}\:{waves} \\ $$$${coming}\:{from}\:{the}\:{wall}? \\ $$

Question Number 41902    Answers: 1   Comments: 0

tan3θ tan2θ =1 find the general^(solution......)

$$\mathrm{tan3}\theta\:\mathrm{tan2}\theta\:=\mathrm{1} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{general}\:^{\mathrm{solution}......} \\ $$

Question Number 41921    Answers: 2   Comments: 0

Find x : 625^(x − 5) = 200((√x))^3

$$\mathrm{Find}\:\mathrm{x}\::\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{625}^{\mathrm{x}\:−\:\mathrm{5}} \:=\:\mathrm{200}\left(\sqrt{\mathrm{x}}\right)^{\mathrm{3}} \\ $$

Question Number 41896    Answers: 2   Comments: 1

∫_(−1/2) ^(1/2) [ (((x+1)/(x−1)))^2 +(((x−1)/(x+1)))^2 −2]^(1/2) dx =

$$\underset{−\mathrm{1}/\mathrm{2}} {\overset{\mathrm{1}/\mathrm{2}} {\int}}\:\:\left[\:\left(\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}\right)^{\mathrm{2}} +\left(\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right)^{\mathrm{2}} −\mathrm{2}\right]^{\mathrm{1}/\mathrm{2}} {dx}\:= \\ $$

  Pg 1658      Pg 1659      Pg 1660      Pg 1661      Pg 1662      Pg 1663      Pg 1664      Pg 1665      Pg 1666      Pg 1667   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com