Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1663

Question Number 40657    Answers: 1   Comments: 0

Question Number 40656    Answers: 1   Comments: 0

(((a 0 0)),((0 a 0)) ) 0 0 a then the value of mod of adjA is

$$\begin{pmatrix}{\mathrm{a}\:\mathrm{0}\:\mathrm{0}}\\{\mathrm{0}\:\mathrm{a}\:\mathrm{0}}\end{pmatrix} \\ $$$$\:\:\:\mathrm{0}\:\mathrm{0}\:\mathrm{a}\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{mod}\:\mathrm{of}\:\mathrm{adjA}\:\mathrm{is} \\ $$$$ \\ $$

Question Number 40640    Answers: 2   Comments: 0

evaluate sin 72^.

$${evaluate} \\ $$$$\mathrm{sin}\:\mathrm{72}\:^{.} \\ $$

Question Number 41351    Answers: 1   Comments: 3

∫_0 ^∞ [(5/e^x )]dx=

$$\int_{\mathrm{0}} ^{\infty} \left[\frac{\mathrm{5}}{\mathrm{e}^{\mathrm{x}} }\right]\mathrm{dx}= \\ $$

Question Number 40637    Answers: 2   Comments: 0

Question Number 40625    Answers: 2   Comments: 0

Question Number 40624    Answers: 0   Comments: 0

let f(x)=∫_0 ^(π/2) ln(((1−xsint)/(1+xsint)))dt . 1) find the value of I = ∫_0 ^(π/2) ln(1−xsint)dt and J = ∫_0 ^(π/2) ln(1+xsint)dt 2) find a simple form of f(x) 3) developp f at integr serie

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\frac{\mathrm{1}−{xsint}}{\mathrm{1}+{xsint}}\right){dt}\:\:. \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left(\mathrm{1}−{xsint}\right){dt} \\ $$$${and}\:{J}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{xsint}\right){dt} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$

Question Number 40621    Answers: 2   Comments: 0

let f(x)=∫_0 ^(π/2) ln(1+xcosθ)dθ 1) calculate f(1) 2) find a simple form of f(x) 3) developp f at ontehr serie

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{xcos}\theta\right){d}\theta\: \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left(\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{ontehr}\:{serie} \\ $$

Question Number 40620    Answers: 3   Comments: 0

find ∫ ((x+1)(√(1+x^2 )) +(1+x^2 )(√(x+1)))dx

$${find}\:\:\int\:\:\:\left(\left({x}+\mathrm{1}\right)\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:+\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{{x}+\mathrm{1}}\right){dx} \\ $$

Question Number 40619    Answers: 0   Comments: 2

let f(x)=∫_0 ^(π/2) (dθ/(x +cos^2 θ)) with x>0 . 1) calculate f(x) and f^′ (x) 2) find f^((n)) (x) and f^((n)) (0) 3) developp f at integr serie.

$${let}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{d}\theta}{{x}\:\:+{cos}^{\mathrm{2}} \theta}\:\:{with}\:{x}>\mathrm{0}\:. \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right)\:{and}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$

Question Number 40615    Answers: 1   Comments: 2

Question Number 40610    Answers: 1   Comments: 0

Question Number 40594    Answers: 1   Comments: 1

Question Number 40587    Answers: 0   Comments: 1

find ∫e^x lnx dx

$$\boldsymbol{\mathrm{find}}\:\int\boldsymbol{\mathrm{e}}^{\boldsymbol{{x}}} \boldsymbol{\mathrm{ln}{x}}\:\boldsymbol{\mathrm{d}{x}} \\ $$

Question Number 40583    Answers: 2   Comments: 0

2^(√x) = x find x

$$\mathrm{2}^{\sqrt{{x}}} =\:{x} \\ $$$${find}\:{x} \\ $$

Question Number 40581    Answers: 1   Comments: 2

Question Number 40580    Answers: 0   Comments: 3

find ∫_0 ^∞ ((ln(1+ix))/(x^3 +8))dx

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left(\mathrm{1}+{ix}\right)}{{x}^{\mathrm{3}} \:+\mathrm{8}}{dx} \\ $$$$ \\ $$

Question Number 40591    Answers: 1   Comments: 1

Question Number 40569    Answers: 0   Comments: 0

Question Number 40551    Answers: 1   Comments: 5

Question Number 40550    Answers: 1   Comments: 0

if three numbers are drawn at random successively without replacement from a set S={1,2,......10}then probability that the minimum of the choosen number is 3 or their maximum is 7 Answer=((11)/(40))

$$\mathrm{if}\:\mathrm{three}\:\mathrm{numbers}\:\mathrm{are}\:\mathrm{drawn}\:\mathrm{at}\:\mathrm{random} \\ $$$$\mathrm{successively}\:\mathrm{without}\:\mathrm{replacement}\:\mathrm{from} \\ $$$$\mathrm{a}\:\mathrm{set}\:\mathrm{S}=\left\{\mathrm{1},\mathrm{2},......\mathrm{10}\right\}\mathrm{then}\:\mathrm{probability}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{minimum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{choosen}\:\mathrm{number}\:\mathrm{is} \\ $$$$\mathrm{3}\:\mathrm{or}\:\mathrm{their}\:\mathrm{maximum}\:\mathrm{is}\:\mathrm{7}\:\:\:\:\:\:\:\: \\ $$$$\:\mathrm{Answer}=\frac{\mathrm{11}}{\mathrm{40}} \\ $$

Question Number 40523    Answers: 1   Comments: 1

If (1+ax+bx^2 )(1−2x)^(18) can be expanded using binomial theorem in ascending power of x.Determine the value of a and b,if the coefficient of x^3 and x^(4 ) are both zero.

$${If}\:\left(\mathrm{1}+{ax}+{bx}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{2}{x}\right)^{\mathrm{18}} \:\:{can}\:{be}\:{expanded}\:{using} \\ $$$${binomial}\:{theorem}\:{in}\:{ascending}\:{power}\:{of}\:{x}.{Determine} \\ $$$${the}\:{value}\:{of}\:\:\:{a}\:{and}\:{b},{if}\:{the}\:{coefficient}\:{of}\:{x}^{\mathrm{3}} \:\:{and}\:{x}^{\mathrm{4}\:} \:\:{are}\:{both}\:{zero}. \\ $$

Question Number 40544    Answers: 1   Comments: 0

solve for x 3^((2x−1)) −4(3^x )+1=0

$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{{x}} \\ $$$$\mathrm{3}^{\left(\mathrm{2}\boldsymbol{{x}}−\mathrm{1}\right)} −\mathrm{4}\left(\mathrm{3}^{\boldsymbol{{x}}} \right)+\mathrm{1}=\mathrm{0} \\ $$

Question Number 40519    Answers: 1   Comments: 1

Question Number 40499    Answers: 1   Comments: 0

A particle of mass 2×10^(−27) kg moves according to the following y=5cos(((πt)/3)+(π/4)) find the maximum kinetic energy

$${A}\:{particle}\:{of}\:{mass}\:\mathrm{2}×\mathrm{10}^{−\mathrm{27}} {kg}\:{moves} \\ $$$${according}\:{to}\:{the}\:{following} \\ $$$${y}=\mathrm{5}{cos}\left(\frac{\pi{t}}{\mathrm{3}}+\frac{\pi}{\mathrm{4}}\right) \\ $$$${find}\:{the}\:{maximum}\:{kinetic}\:{energy} \\ $$

Question Number 40498    Answers: 1   Comments: 0

A gas at 17° has the ratio of its initial to final volume as 25 with initial pressure of 2×10^5 Nm^(−2) .Calculate the final pressure and temperature after compression.(γ=1.5)

$${A}\:{gas}\:{at}\:\mathrm{17}°\:{has}\:{the}\:{ratio}\:{of}\:{its}\:{initial} \\ $$$${to}\:{final}\:{volume}\:{as}\:\mathrm{25}\:{with}\:{initial} \\ $$$${pressure}\:{of}\:\mathrm{2}×\mathrm{10}^{\mathrm{5}} {Nm}^{−\mathrm{2}} .{Calculate} \\ $$$${the}\:{final}\:{pressure}\:{and}\:{temperature} \\ $$$${after}\:{compression}.\left(\gamma=\mathrm{1}.\mathrm{5}\right) \\ $$

  Pg 1658      Pg 1659      Pg 1660      Pg 1661      Pg 1662      Pg 1663      Pg 1664      Pg 1665      Pg 1666      Pg 1667   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com