Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1661

Question Number 35682    Answers: 1   Comments: 2

let F(x) = ∫_(x +1) ^(x^2 +1) arctan(1+t)dt 1) calculate (∂F/∂x)(x) 2) find lim_(x→0) F(x) .

$${let}\:{F}\left({x}\right)\:=\:\int_{{x}\:+\mathrm{1}} ^{{x}^{\mathrm{2}} \:+\mathrm{1}} \:\:\:{arctan}\left(\mathrm{1}+{t}\right){dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\frac{\partial{F}}{\partial{x}}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:\:{find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:{F}\left({x}\right)\:. \\ $$

Question Number 35681    Answers: 1   Comments: 1

find ∫ arctan(x)dx

$${find}\:\:\int\:{arctan}\left({x}\right){dx} \\ $$

Question Number 35680    Answers: 0   Comments: 0

by using residus theorem calculate W_n =∫_0 ^(π/2) cos^(2n) t dt ( wallis integal) n integr natural .

$${by}\:{using}\:{residus}\:{theorem}\:{calculate} \\ $$$${W}_{{n}} \:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{cos}^{\mathrm{2}{n}} {t}\:{dt}\:\:\left(\:\:{wallis}\:{integal}\right)\:{n}\:{integr} \\ $$$${natural}\:. \\ $$

Question Number 35678    Answers: 0   Comments: 1

let f(t) =∫_0 ^∞ ((e^(−tx^2 ) arctan(x^2 ))/x^2 )dx with t>0 1) study the existencte of f(t) 2)calculate f^′ (t) 3)find a simple form of f(t).

$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{tx}^{\mathrm{2}} } \:{arctan}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx}\:{with}\:{t}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{study}\:{the}\:{existencte}\:{of}\:{f}\left({t}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:{f}^{'} \left({t}\right) \\ $$$$\left.\mathrm{3}\right){find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({t}\right). \\ $$

Question Number 35677    Answers: 0   Comments: 2

find F(x)=∫_0 ^x e^(−2t) cos(t+(π/4))dx.

$${find}\:{F}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:{e}^{−\mathrm{2}{t}} {cos}\left({t}+\frac{\pi}{\mathrm{4}}\right){dx}. \\ $$

Question Number 35676    Answers: 0   Comments: 1

find f(x)=∫_0 ^x ch^4 t dt

$${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:{ch}^{\mathrm{4}} {t}\:{dt} \\ $$

Question Number 35675    Answers: 0   Comments: 1

calculate ∫_1 ^3 (x/(e^x −1))dx ..

$${calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\:\frac{{x}}{{e}^{{x}} \:−\mathrm{1}}{dx}\:.. \\ $$

Question Number 35656    Answers: 0   Comments: 5

Following alphabet lacks one letter. abcdefghijklmnopqrstuvxyz I request that letter, please come and make the alphabet complete.

$$\mathrm{Following}\:\mathrm{alphabet}\:\mathrm{lacks}\:\mathrm{one}\:\mathrm{letter}. \\ $$$$\:\:\:\:\:\mathrm{abcdefghijklmnopqrstuvxyz} \\ $$$$\mathrm{I}\:\mathrm{request}\:\mathrm{that}\:\mathrm{letter}, \\ $$$$\mathrm{please}\:\mathrm{come}\:\mathrm{and}\:\mathrm{make}\:\mathrm{the}\:\mathrm{alphabet} \\ $$$$\mathrm{complete}. \\ $$$$ \\ $$

Question Number 35654    Answers: 1   Comments: 0

if cos^2 θ−sin^2 θ=tan^2 ∅ Then proof that 2cos^2 ∅−1=cos^2 ∅−sin^2 ∅=2tan^2 θ

$${if}\:\:\mathrm{cos}\:^{\mathrm{2}} \theta−\mathrm{sin}\:^{\mathrm{2}} \theta=\mathrm{tan}\:^{\mathrm{2}} \emptyset\:\:{Then}\:{proof}\:{that} \\ $$$$\mathrm{2cos}\:^{\mathrm{2}} \emptyset−\mathrm{1}=\mathrm{cos}\:^{\mathrm{2}} \emptyset−\mathrm{sin}\:^{\mathrm{2}} \emptyset=\mathrm{2tan}\:^{\mathrm{2}} \theta \\ $$

Question Number 35642    Answers: 1   Comments: 2

If y= (√((a−x)(x−b)))−(a−b)tan^(−1) ((((a−x)/(x−b)))^(0.5) ). Then find (dy/dx) ?

$${If}\:{y}=\:\sqrt{\left({a}−{x}\right)\left({x}−{b}\right)}−\left({a}−{b}\right)\mathrm{tan}^{−\mathrm{1}} \left(\left(\frac{{a}−{x}}{{x}−{b}}\right)^{\mathrm{0}.\mathrm{5}} \right). \\ $$$${Then}\:{find}\:\frac{{dy}}{{dx}}\:? \\ $$

Question Number 35640    Answers: 1   Comments: 0

A panel of 3 women and 4 men is to be formed from 8 women and 7 men.Find the number of ways which the panel can be formed if it must contain at least 2 women.

$${A}\:{panel}\:{of}\:\mathrm{3}\:{women}\:{and}\:\mathrm{4}\:{men}\:{is} \\ $$$${to}\:{be}\:{formed}\:{from}\:\mathrm{8}\:{women}\:{and} \\ $$$$\mathrm{7}\:{men}.{Find}\:{the}\:{number}\:{of}\:{ways} \\ $$$${which}\:{the}\:{panel}\:{can}\:{be}\:{formed}\:{if} \\ $$$${it}\:{must}\:{contain}\:{at}\:{least}\:\mathrm{2}\:{women}. \\ $$

Question Number 35639    Answers: 0   Comments: 1

Three boys,two girls and a puppy sit at a round table.In how many ways can they be arranged if the puppy is to be seated i)between the two girls ii)between any two boys

$${Three}\:{boys},{two}\:{girls}\:{and}\:{a}\:{puppy} \\ $$$${sit}\:{at}\:{a}\:{round}\:{table}.{In}\:{how}\:{many} \\ $$$${ways}\:{can}\:{they}\:{be}\:{arranged}\:{if}\:{the} \\ $$$${puppy}\:{is}\:{to}\:{be}\:{seated} \\ $$$$\left.{i}\right){between}\:{the}\:{two}\:{girls} \\ $$$$\left.{ii}\right){between}\:{any}\:{two}\:{boys} \\ $$

Question Number 35635    Answers: 1   Comments: 1

Question Number 35992    Answers: 0   Comments: 1

let f(x)= ((sin(2x))/x) χ_(]−a,a[) (x) with a>0 calculate the fourier trsnsform of f .

$${let}\:{f}\left({x}\right)=\:\frac{{sin}\left(\mathrm{2}{x}\right)}{{x}}\:\chi_{\left.\right]−{a},{a}\left[\right.} \left({x}\right)\:\:{with}\:{a}>\mathrm{0} \\ $$$${calculate}\:{the}\:{fourier}\:{trsnsform}\:{of}\:{f}\:. \\ $$

Question Number 35632    Answers: 0   Comments: 2

let ϕ(x)= (1/(√(a^2 −x^2 ))) if ∣x∣<a and ϕ(x)=0 if ∣x∣≥a find the fourier transform of ϕ .

$${let}\:\varphi\left({x}\right)=\:\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }}\:\:{if}\:\mid{x}\mid<{a}\:\:{and}\:\varphi\left({x}\right)=\mathrm{0}\:{if}\:\mid{x}\mid\geqslant{a} \\ $$$${find}\:{the}\:{fourier}\:{transform}\:{of}\:\varphi\:. \\ $$

Question Number 35631    Answers: 0   Comments: 0

let U_n = ∫_0 ^∞ e^(−(t/n)) arctan(t)dt find a equivalent of U_n (n→+∞)

$${let}\:{U}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−\frac{{t}}{{n}}} \:\:{arctan}\left({t}\right){dt} \\ $$$${find}\:{a}\:{equivalent}\:{of}\:{U}_{{n}} \:\:\left({n}\rightarrow+\infty\right) \\ $$

Question Number 35630    Answers: 0   Comments: 5

1) find the value of f(x)=∫_0 ^∞ ((1−cos(xt))/t^2 ) e^(−t) dt 2) calculate ∫_0 ^∞ ((1−cos(t))/t^2 ) e^(−t) dt .

$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}−{cos}\left({xt}\right)}{{t}^{\mathrm{2}} }\:{e}^{−{t}} {dt} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}−{cos}\left({t}\right)}{{t}^{\mathrm{2}} }\:{e}^{−{t}} \:{dt}\:. \\ $$

Question Number 35629    Answers: 0   Comments: 0

let f(x,y) = ∫_x ^y ((ln(t)ln(1−t))/t)dt with 0<x<y<1 give f(x,y) at form of serie .

$${let}\:\:{f}\left({x},{y}\right)\:=\:\int_{{x}} ^{{y}} \:\:\frac{{ln}\left({t}\right){ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt}\:\:{with}\:\mathrm{0}<{x}<{y}<\mathrm{1} \\ $$$${give}\:{f}\left({x},{y}\right)\:{at}\:{form}\:{of}\:{serie}\:. \\ $$

Question Number 35628    Answers: 0   Comments: 1

find the value of I =∫_0 ^1 ((ln(t)ln(1−t))/t)dt

$${find}\:{the}\:{value}\:{of}\:\:{I}\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({t}\right){ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt} \\ $$

Question Number 35627    Answers: 0   Comments: 0

study the convergence of I =∫_0 ^∞ (dx/((1+x^2 ∣sinx∣)^(3/2) ))

$${study}\:{the}\:{convergence}\:{of}\: \\ $$$${I}\:\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \mid{sinx}\mid\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$

Question Number 35626    Answers: 0   Comments: 0

1) study the diagonalisstion of the matrice A = (((1+a^2 a 0)),((a 1+a^2 a)) ) ( 0 a 1+a^2 ) 2) calculate A^n

$$\left.\mathrm{1}\right)\:{study}\:{the}\:{diagonalisstion}\:{of}\:{the}\:{matrice} \\ $$$${A}\:=\begin{pmatrix}{\mathrm{1}+{a}^{\mathrm{2}} \:\:\:\:\:{a}\:\:\:\:\:\:\:\mathrm{0}}\\{{a}\:\:\:\:\:\:\:\:\:\mathrm{1}+{a}^{\mathrm{2}} \:\:\:\:\:{a}}\end{pmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left(\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:{a}\:\:\:\:\mathrm{1}+{a}^{\mathrm{2}} \:\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{A}^{{n}} \\ $$

Question Number 35625    Answers: 0   Comments: 0

find lim_(ξ→0) ∫_0 ^(π/2) (dx/(√( sin^2 x +ξ cos^2 x)))

$${find}\:{lim}_{\xi\rightarrow\mathrm{0}} \:\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\frac{{dx}}{\sqrt{\:{sin}^{\mathrm{2}} {x}\:+\xi\:{cos}^{\mathrm{2}} {x}}} \\ $$

Question Number 35624    Answers: 0   Comments: 0

let R_n = Σ_(k=n+1) ^∞ (1/(k!)) find a equivalent of R_n when n→+∞

$${let}\:{R}_{{n}} \:=\:\sum_{{k}={n}+\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{k}!} \\ $$$${find}\:{a}\:{equivalent}\:{of}\:{R}_{{n}} \:\:{when}\:{n}\rightarrow+\infty \\ $$

Question Number 35623    Answers: 0   Comments: 0

solve the differencial system {_(y^′ = y +2z +t^2 ) ^(x^′ = y +t^2 ) {z^′ =2x−2y

$${solve}\:{the}\:{differencial}\:{system} \\ $$$$\left\{_{{y}^{'} =\:{y}\:+\mathrm{2}{z}\:+{t}^{\mathrm{2}} } ^{{x}^{'} \:\:=\:{y}\:+{t}^{\mathrm{2}} } \right. \\ $$$$\left\{{z}^{'} \:=\mathrm{2}{x}−\mathrm{2}{y}\right. \\ $$

Question Number 35622    Answers: 0   Comments: 0

find all matrices M ∈M_3 (R) / M^2 =M

$${find}\:{all}\:{matrices}\:{M}\:\in{M}_{\mathrm{3}} \left({R}\right)\:\:/\:\:{M}^{\mathrm{2}} \:={M} \\ $$

Question Number 35621    Answers: 0   Comments: 2

calculate S(x) = Σ_(n=0) ^∞ (x^(3n) /(3n+1)) after finding the radius of convergence . 2) find the value of Σ_(n=0) ^∞ (1/((3n+1)8^n ))

$${calculate}\:\:\:{S}\left({x}\right)\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{3}{n}} }{\mathrm{3}{n}+\mathrm{1}}\:\:{after}\:{finding} \\ $$$${the}\:{radius}\:{of}\:{convergence}\:. \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)\mathrm{8}^{{n}} } \\ $$

  Pg 1656      Pg 1657      Pg 1658      Pg 1659      Pg 1660      Pg 1661      Pg 1662      Pg 1663      Pg 1664      Pg 1665   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com