Question and Answers Forum |
AllQuestion and Answers: Page 1661 |
find lim_(x→0) ((1−cos(sinx))/x^2 ) |
Find the largest prime factor of the following: (1×2×3)+(2×3×4)+...+(2014×2015×2016) |
Find lim_(n→∞) ((3^(n+1) +2^(n+1) )/(3^n +2^n )) |
![]() |
lim_(x→0) ((ln (sec (ex)sec (e^2 x)......sec (e^(50) x)))/(e^2 −e^(2cos x) )) = ? |
![]() |
![]() |
![]() |
calculate lim_(a→0^+ ) ∫_(−a) ^a (√((1+x^2 )/(a^2 −x^2 ))) dx . |
let B_n =Σ_(k=1) ^n sin(((kπ)/n)) sin((k/n^2 )) find lim_(n→+∞) B_n |
let S_n = Σ_(k=1) ^n (k^2 /(n^2 (√(n^2 +k^2 )))) find lim_(n→+∞) S_n |
let A_n =Σ_(k=1) ^n (1/(k+n))ln(1+(k/n)) calculate lim_(n→+∞) A_n |
calculate f(a)=∫_0 ^π (dx/(1−a cosx)) a from R . 2) application calculate ∫_0 ^π (dx/(1−2cosx)) |
calculate ∫_(√3) ^(+∞) (dx/(x(√( 2+x^2 )))) . |
calculate ∫_0 ^(π/4) x artan(2x+1)dx |
calculate I = ∫_0 ^1 e^(2t) ln(1+e^t )dt |
find ∫ x^2 ln(x^6 −1)dx |
let F(x) = ∫_(x +1) ^(x^2 +1) arctan(1+t)dt 1) calculate (∂F/∂x)(x) 2) find lim_(x→0) F(x) . |
find ∫ arctan(x)dx |
by using residus theorem calculate W_n =∫_0 ^(π/2) cos^(2n) t dt ( wallis integal) n integr natural . |
let f(t) =∫_0 ^∞ ((e^(−tx^2 ) arctan(x^2 ))/x^2 )dx with t>0 1) study the existencte of f(t) 2)calculate f^′ (t) 3)find a simple form of f(t). |
find F(x)=∫_0 ^x e^(−2t) cos(t+(π/4))dx. |
find f(x)=∫_0 ^x ch^4 t dt |
calculate ∫_1 ^3 (x/(e^x −1))dx .. |
Following alphabet lacks one letter. abcdefghijklmnopqrstuvxyz I request that letter, please come and make the alphabet complete. |
if cos^2 θ−sin^2 θ=tan^2 ∅ Then proof that 2cos^2 ∅−1=cos^2 ∅−sin^2 ∅=2tan^2 θ |
Pg 1656 Pg 1657 Pg 1658 Pg 1659 Pg 1660 Pg 1661 Pg 1662 Pg 1663 Pg 1664 Pg 1665 |