Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1660
Question Number 35763 Answers: 1 Comments: 0
Question Number 35743 Answers: 1 Comments: 1
$$\boldsymbol{\mathrm{find}}\:\boldsymbol{{x}} \\ $$$$\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{log}}\mathrm{2}+\boldsymbol{\mathrm{log}}_{\mathrm{2}} \left(\boldsymbol{{x}}+\mathrm{1}\right)\right)=\mathrm{0} \\ $$
Question Number 35739 Answers: 1 Comments: 2
Question Number 35738 Answers: 2 Comments: 0
$$\:{Given}\:{that}\:\:\int_{\mathrm{0}} ^{{k}} {x}^{\mathrm{2}} =\:\mathrm{16} \\ $$$${find}\:{the}\:{value}\:{of}\:{k} \\ $$
Question Number 35737 Answers: 0 Comments: 4
Question Number 35732 Answers: 1 Comments: 1
Question Number 35729 Answers: 1 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\:{I}\:=\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{2}−{cosx}} \\ $$
Question Number 35833 Answers: 1 Comments: 1
$${fond}\:{lim}_{{n}\rightarrow+\infty} \:\:{n}^{{a}} \:\:\left\{{ln}\left(\mathrm{1}+{e}^{−{n}} \right)\:−{e}^{−{n}} \right\}\:{with}\:{a}>\mathrm{0} \\ $$
Question Number 35727 Answers: 0 Comments: 1
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\:\frac{{sin}\left({shx}\right)\:−{sh}\left({sinx}\right)}{{x}} \\ $$
Question Number 35726 Answers: 1 Comments: 1
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{\mathrm{1}−{cos}\left({sinx}\right)}{{x}^{\mathrm{2}} } \\ $$
Question Number 35723 Answers: 1 Comments: 0
$${Find}\:{the}\:{largest}\:{prime}\:{factor}\:{of}\:\:{the}\:{following}: \\ $$$$\left(\mathrm{1}×\mathrm{2}×\mathrm{3}\right)+\left(\mathrm{2}×\mathrm{3}×\mathrm{4}\right)+...+\left(\mathrm{2014}×\mathrm{2015}×\mathrm{2016}\right) \\ $$
Question Number 35715 Answers: 1 Comments: 1
$${Find}\underset{{n}\rightarrow\infty} {\:{lim}}\frac{\mathrm{3}^{{n}+\mathrm{1}} +\mathrm{2}^{{n}+\mathrm{1}} }{\mathrm{3}^{{n}} +\mathrm{2}^{{n}} } \\ $$
Question Number 35750 Answers: 0 Comments: 4
Question Number 35736 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ln}\:\left(\mathrm{sec}\:\left({ex}\right)\mathrm{sec}\:\left({e}^{\mathrm{2}} {x}\right)......\mathrm{sec}\:\left({e}^{\mathrm{50}} {x}\right)\right)}{{e}^{\mathrm{2}} −{e}^{\mathrm{2cos}\:{x}} }\:=\:? \\ $$
Question Number 35703 Answers: 1 Comments: 0
Question Number 35696 Answers: 0 Comments: 7
Question Number 35851 Answers: 1 Comments: 1
Question Number 35691 Answers: 0 Comments: 0
$${calculate}\:{lim}_{{a}\rightarrow\mathrm{0}^{+} \:\:\:\:} \:\:\:\int_{−{a}} ^{{a}} \:\:\sqrt{\frac{\mathrm{1}+{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} \:−{x}^{\mathrm{2}} }}\:\:{dx}\:. \\ $$
Question Number 35690 Answers: 0 Comments: 0
$${let}\:{B}_{{n}} \:=\sum_{{k}=\mathrm{1}} ^{{n}} \:\:{sin}\left(\frac{{k}\pi}{{n}}\right)\:{sin}\left(\frac{{k}}{{n}^{\mathrm{2}} }\right) \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} \:\:{B}_{{n}} \\ $$
Question Number 35689 Answers: 1 Comments: 2
$${let}\:{S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{{k}^{\mathrm{2}} }{{n}^{\mathrm{2}} \sqrt{{n}^{\mathrm{2}} \:+{k}^{\mathrm{2}} }} \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} \:\:{S}_{{n}} \\ $$
Question Number 35688 Answers: 1 Comments: 1
$${let}\:{A}_{{n}} \:=\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{\mathrm{1}}{{k}+{n}}{ln}\left(\mathrm{1}+\frac{{k}}{{n}}\right) \\ $$$${calculate}\:{lim}_{{n}\rightarrow+\infty} {A}_{{n}} \\ $$
Question Number 35687 Answers: 1 Comments: 2
$${calculate}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\frac{{dx}}{\mathrm{1}−{a}\:{cosx}}\:\:{a}\:{from}\:{R}\:. \\ $$$$\left.\mathrm{2}\right)\:{application}\:\:{calculate}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{1}−\mathrm{2}{cosx}} \\ $$
Question Number 35686 Answers: 1 Comments: 1
$${calculate}\:\:\int_{\sqrt{\mathrm{3}}} ^{+\infty} \:\:\:\:\:\frac{{dx}}{{x}\sqrt{\:\mathrm{2}+{x}^{\mathrm{2}} }}\:. \\ $$
Question Number 35685 Answers: 1 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:{x}\:{artan}\left(\mathrm{2}{x}+\mathrm{1}\right){dx} \\ $$
Question Number 35684 Answers: 1 Comments: 1
$${calculate}\:{I}\:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{\mathrm{2}{t}} \:{ln}\left(\mathrm{1}+{e}^{{t}} \right){dt} \\ $$
Question Number 35683 Answers: 1 Comments: 1
$${find}\:\int\:\:{x}^{\mathrm{2}} {ln}\left({x}^{\mathrm{6}} −\mathrm{1}\right){dx} \\ $$
Pg 1655 Pg 1656 Pg 1657 Pg 1658 Pg 1659 Pg 1660 Pg 1661 Pg 1662 Pg 1663 Pg 1664
Terms of Service
Privacy Policy
Contact: info@tinkutara.com