Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1660

Question Number 42786    Answers: 1   Comments: 1

calculate lim_(x→0) ((1−(x/(sinx)))/x^2 )

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{\mathrm{1}−\frac{{x}}{{sinx}}}{{x}^{\mathrm{2}} } \\ $$

Question Number 42785    Answers: 1   Comments: 1

find lim_(x→0) ((1+x −e^(arcsinx) )/x^2 )

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{\mathrm{1}+{x}\:−{e}^{{arcsinx}} }{{x}^{\mathrm{2}} } \\ $$

Question Number 42784    Answers: 0   Comments: 0

find lim_(x→0^+ ) ln(((e^(x^2 −x) −1)/x))

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:{ln}\left(\frac{{e}^{{x}^{\mathrm{2}} −{x}} \:−\mathrm{1}}{{x}}\right) \\ $$

Question Number 42783    Answers: 0   Comments: 0

calculate lim_(x→(π/4)) ∣tan(2x)∣^(sin(4x))

$${calculate}\:{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{4}}} \:\:\:\:\mid{tan}\left(\mathrm{2}{x}\right)\mid^{{sin}\left(\mathrm{4}{x}\right)} \\ $$

Question Number 42782    Answers: 0   Comments: 0

calculate lim_(x→0^+ ) {tan((π/(2+x)))}^x

$${calculate}\:\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:\left\{{tan}\left(\frac{\pi}{\mathrm{2}+{x}}\right)\right\}^{{x}} \\ $$

Question Number 42781    Answers: 1   Comments: 1

calculate lim_(x→(π/4)) ((sin(2x)sin(x−(π/4)))/(sinx −cosx))

$${calculate}\:{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{4}}} \:\:\:\:\:\:\frac{{sin}\left(\mathrm{2}{x}\right){sin}\left({x}−\frac{\pi}{\mathrm{4}}\right)}{{sinx}\:−{cosx}} \\ $$

Question Number 42780    Answers: 0   Comments: 0

find lim_(x→0^+ ) (([(x+1)^2 ] −[(2x+1)^2 ])/x)

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:\:\:\:\frac{\left[\left({x}+\mathrm{1}\right)^{\mathrm{2}} \right]\:−\left[\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} \right]}{{x}} \\ $$

Question Number 42779    Answers: 0   Comments: 1

calculate lim_(x→−∞) (x^4 +1)tan((1/x)) .

$${calculate}\:{lim}_{{x}\rightarrow−\infty} \:\:\left({x}^{\mathrm{4}} +\mathrm{1}\right){tan}\left(\frac{\mathrm{1}}{{x}}\right)\:. \\ $$

Question Number 42776    Answers: 1   Comments: 0

Solve: q^4 − 40q^2 + q + 384 = 0

$$\mathrm{Solve}:\:\:\:\:\:\mathrm{q}^{\mathrm{4}} \:−\:\mathrm{40q}^{\mathrm{2}} \:+\:\mathrm{q}\:+\:\mathrm{384}\:=\:\mathrm{0} \\ $$

Question Number 42775    Answers: 0   Comments: 2

my mother fell down and broke waist...so i ambusy for mother...age 85...i am now kolkata for mother

$${my}\:{mother}\:{fell}\:{down}\:{and}\:{broke}\:{waist}...{so}\:{i}\:{ambusy} \\ $$$${for}\:{mother}...{age}\:\mathrm{85}...{i}\:{am}\:{now}\:{kolkata}\:{for}\:{mother} \\ $$

Question Number 42773    Answers: 0   Comments: 0

let f(x) = ∫_0 ^1 (e^t /(1+x^t )) dt with 0<x<1 give f(x) at form of serie .

$${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{e}^{{t}} }{\mathrm{1}+{x}^{{t}} }\:{dt}\:\:\:\:\:{with}\:\mathrm{0}<{x}<\mathrm{1} \\ $$$${give}\:{f}\left({x}\right)\:{at}\:{form}\:{of}\:{serie}\:. \\ $$

Question Number 42772    Answers: 0   Comments: 1

mag∫2x+x^3 =

$$\mathrm{mag}\int\mathrm{2x}+\mathrm{x}^{\mathrm{3}} \\ $$$$= \\ $$

Question Number 42771    Answers: 0   Comments: 0

1) find ∫_0 ^1 ((ln(x))/(1−x^2 ))dx 2) find ∫_0 ^1 ((ln(x))/(1−x^4 ))dx

$$\left.\mathrm{1}\right)\:{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left({x}\right)}{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left({x}\right)}{\mathrm{1}−{x}^{\mathrm{4}} }{dx} \\ $$

Question Number 42770    Answers: 0   Comments: 0

1)find A(ξ) = ∫_0 ^ξ ln(x)ln(1−x)dx with 0<ξ<1 2) calculate ∫_0 ^1 ln(x)ln(1−x)dx

$$\left.\mathrm{1}\right){find}\:{A}\left(\xi\right)\:=\:\int_{\mathrm{0}} ^{\xi} {ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right){dx}\:\:{with}\:\:\mathrm{0}<\xi<\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right){dx} \\ $$

Question Number 42769    Answers: 0   Comments: 0

find ∫_0 ^1 (x^2 /(1+xe^(−x) )) dx .

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{xe}^{−{x}} }\:{dx}\:. \\ $$

Question Number 42768    Answers: 0   Comments: 0

Question Number 42766    Answers: 0   Comments: 0

Question Number 42765    Answers: 0   Comments: 1

Question Number 42763    Answers: 0   Comments: 1

For A = {1, 2, 3}, let B be the set of 2−element sets belonging to P(A) and let C be the set consisting of the sets that are intersections of two distinct elements of B. Determine C P(A) = power set of A

$$\mathrm{For}\:{A}\:=\:\left\{\mathrm{1},\:\mathrm{2},\:\mathrm{3}\right\},\:\mathrm{let}\:{B}\:\mathrm{be}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{2}−\mathrm{element}\:\mathrm{sets} \\ $$$$\mathrm{belonging}\:\mathrm{to}\:{P}\left({A}\right)\:\mathrm{and}\:\mathrm{let}\:{C}\:\mathrm{be}\:\mathrm{the}\:\mathrm{set}\:\mathrm{consisting}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{sets}\:\mathrm{that}\:\mathrm{are}\:\mathrm{intersections}\:\mathrm{of}\:\mathrm{two}\:\mathrm{distinct}\:\mathrm{elements} \\ $$$$\mathrm{of}\:{B}.\:\mathrm{Determine}\:{C} \\ $$$$ \\ $$$${P}\left({A}\right)\:=\:\mathrm{power}\:\mathrm{set}\:\mathrm{of}\:{A} \\ $$

Question Number 42761    Answers: 0   Comments: 0

Question Number 42758    Answers: 0   Comments: 0

Question Number 42756    Answers: 0   Comments: 1

33(√(67))

$$\mathrm{33}\sqrt{\mathrm{67}} \\ $$

Question Number 42730    Answers: 1   Comments: 1

Given that f(x) = (√(1−x)) Find a) D_f for the arranged form of f(x) b) fg if fh= g(x) and h(x)= 3x^2 −4 c) A(x)= { (((√(1−x)) , x≠ 1)),((x^2 ,x≠0)) :} find A^(−1) .

$${Given}\:{that}\:{f}\left({x}\right)\:=\:\sqrt{\mathrm{1}−{x}}\:{Find} \\ $$$$\left.{a}\right)\:{D}_{{f}} \:{for}\:{the}\:{arranged}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.{b}\right)\:{fg}\:{if}\:{fh}=\:{g}\left({x}\right)\:{and}\:{h}\left({x}\right)=\:\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4} \\ $$$$\left.{c}\right)\:{A}\left({x}\right)=\:\begin{cases}{\sqrt{\mathrm{1}−{x}}\:,\:{x}\neq\:\mathrm{1}}\\{{x}^{\mathrm{2}} ,{x}\neq\mathrm{0}}\end{cases} \\ $$$${find}\:{A}^{−\mathrm{1}} . \\ $$$$ \\ $$$$ \\ $$

Question Number 42728    Answers: 2   Comments: 0

If A= [(( cos x),(sin x)),((−sin x),(cos x)) ] and A adj A = k [(1,0),(0,1) ], then the value of k is

$$\mathrm{If}\:{A}=\begin{bmatrix}{\:\:\:\mathrm{cos}\:{x}}&{\mathrm{sin}\:{x}}\\{−\mathrm{sin}\:{x}}&{\mathrm{cos}\:{x}}\end{bmatrix}\:\mathrm{and}\: \\ $$$${A}\:\mathrm{adj}\:{A}\:=\:{k}\begin{bmatrix}{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}\end{bmatrix},\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{k}\:\mathrm{is} \\ $$

Question Number 42725    Answers: 1   Comments: 0

Question Number 42719    Answers: 0   Comments: 1

  Pg 1655      Pg 1656      Pg 1657      Pg 1658      Pg 1659      Pg 1660      Pg 1661      Pg 1662      Pg 1663      Pg 1664   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com