Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1659
Question Number 33094 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{1}+{x}+{x}^{\mathrm{2}} }\:\:{dvelopp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$
Question Number 33090 Answers: 1 Comments: 0
Question Number 33089 Answers: 1 Comments: 5
$$\:\boldsymbol{\mathrm{T}}\mathrm{he}\:\boldsymbol{\mathrm{LCM}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{GCF}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{three}}\:\boldsymbol{\mathrm{numbers}}\:\boldsymbol{\mathrm{is}} \\ $$$$\:\mathrm{360}\:\boldsymbol{\mathrm{and}}\:\mathrm{6}\:\boldsymbol{\mathrm{respectively}}.\:\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{the}} \\ $$$$\:\boldsymbol{\mathrm{two}}\:\boldsymbol{\mathrm{numbers}}\:\boldsymbol{\mathrm{are}}\:\mathrm{18}\:\boldsymbol{\mathrm{and}}\:\mathrm{60}. \\ $$$$\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{third}}\:\boldsymbol{\mathrm{number}}. \\ $$
Question Number 33088 Answers: 0 Comments: 3
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{n}^{\mathrm{2}} }{\mathrm{2}^{{n}−\mathrm{1}} } \\ $$
Question Number 33074 Answers: 1 Comments: 1
$${find}\:{interms}\:{of}\:{n}\:\:{the}\:{sum}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{k}^{\mathrm{2}} \:\:{C}_{{n}} ^{{k}} \\ $$
Question Number 33073 Answers: 2 Comments: 1
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}^{\mathrm{2}} {e}^{−{x}} \\ $$
Question Number 33072 Answers: 1 Comments: 1
$${find}\:\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{k}\:{C}_{{n}} ^{{k}} \:. \\ $$
Question Number 33069 Answers: 0 Comments: 0
$${by}\:\:{using}\:{residus}\:{theorem}\:{prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}\:{dt}\:=\:\frac{\pi}{{sin}\left(\pi{a}\right)}\:{with}\:\:\mathrm{0}<{a}<\mathrm{1}\:. \\ $$
Question Number 33064 Answers: 1 Comments: 2
Question Number 33153 Answers: 0 Comments: 1
$${it}\:{is}\:{given}\:{that} \\ $$$$\:\:\underset{{r}=\mathrm{1}\:} {\overset{\mathrm{20}} {\sum}}\left[{f}\left({r}\right)−\mathrm{10}\right]=\mathrm{200} \\ $$$${and} \\ $$$$\:\underset{{r}=\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\left[{f}\left({r}\right)−\mathrm{10}\right]^{\mathrm{2}} =\mathrm{2800} \\ $$$${find}\:{the}\:{value}\:{of} \\ $$$$\underset{{r}=\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\left[{f}\left({r}\right)\right]^{\mathrm{2}} \\ $$$$ \\ $$
Question Number 33052 Answers: 0 Comments: 1
Question Number 33051 Answers: 0 Comments: 3
Question Number 33048 Answers: 0 Comments: 7
$${Let}\:{f}:{N}\rightarrow{R}\:{be}\:{a}\:{function}\:{sarisfying} \\ $$$${following}\:{conditions}: \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1}. \\ $$$${f}\left(\mathrm{1}\right)+\mathrm{2}{f}\left(\mathrm{2}\right)+....+{nf}\left({n}\right)={n}\left({n}+\mathrm{1}\right){f}\left({n}\right). \\ $$$${Then}\:{find}\:{the}\:{value}\:{of}\:\mathrm{49}{f}\left(\mathrm{49}\right)\:? \\ $$
Question Number 33043 Answers: 1 Comments: 0
$$\:\boldsymbol{\mathrm{equal}}\:\boldsymbol{\mathrm{squares}}\:\boldsymbol{\mathrm{as}}\:\boldsymbol{\mathrm{large}}\:\boldsymbol{\mathrm{as}}\:\boldsymbol{\mathrm{possible}} \\ $$$$\:\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{drawn}}\:\boldsymbol{\mathrm{on}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{rectangular}}\:\boldsymbol{\mathrm{ceiling}}\:\boldsymbol{\mathrm{board}} \\ $$$$\:\boldsymbol{\mathrm{measuring}}\:\mathrm{54}\boldsymbol{\mathrm{cm}}\:\boldsymbol{\mathrm{by}}\:\mathrm{78}\boldsymbol{\mathrm{cm}},\boldsymbol{\mathrm{find}} \\ $$$$\:\left(\boldsymbol{\mathrm{a}}\right)\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{size}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{squares}} \\ $$$$\:\left(\boldsymbol{\mathrm{b}}\right)\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{total}}\:\boldsymbol{\mathrm{number}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{squares}} \\ $$
Question Number 33036 Answers: 1 Comments: 0
$${If}\:{range}\:{of}\: \\ $$$${f}\left({x}\right)=\:\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left({x}+\mathrm{3}\right)\left({x}+\mathrm{4}\right)+\mathrm{5} \\ $$$${x}\in\:\left[−\mathrm{6},\mathrm{6}\right]\:{is}\:\left[{a},{b}\right]\:,{a},{b}\in{N},\:{find}\:{a}+{b}\:? \\ $$
Question Number 33032 Answers: 1 Comments: 5
$${f}:{N}\rightarrow{R} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{2005}. \\ $$$${and}\: \\ $$$${f}\left(\mathrm{1}\right)+{f}\left(\mathrm{2}\right)+......+{f}\left({n}\right)=\:{n}^{\mathrm{2}} \:{f}\left({n}\right),{n}>\mathrm{1}. \\ $$$${Then}\:{f}\left(\mathrm{2004}\right)=? \\ $$
Question Number 33028 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{e}^{−\left[{t}\right]} }{{t}+\mathrm{1}}{dt}\:\:. \\ $$
Question Number 33027 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{5}} }{dx}. \\ $$
Question Number 33026 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}+{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{6}} }\:{dx}\:. \\ $$
Question Number 33009 Answers: 2 Comments: 1
$${help}\:!\:!\:! \\ $$$$\int\:\frac{{dx}}{{csc}\left({x}\right)−\mathrm{1}}\:=\:? \\ $$$$ \\ $$$$\left[\:{my}\:{way}\:\right] \\ $$$$\int\left(\:\frac{{dx}}{\frac{\mathrm{1}}{{sinx}}\:−\:\mathrm{1}}\:\right) \\ $$$$=\int\frac{{sinx}}{\mathrm{1}−{sinx}}\:{dx} \\ $$$$=−\int\:\frac{{sinx}−\mathrm{1}+\mathrm{1}}{{sinx}−\mathrm{1}}\:{dx} \\ $$$$=−\int\mathrm{1}+\frac{\mathrm{1}}{{sinx}−\mathrm{1}}\:{dx} \\ $$$$=−\left(\int\mathrm{1}{dx}+\int\frac{{sinx}+\mathrm{1}}{\left({sinx}−\mathrm{1}\right)\left({sinx}+\mathrm{1}\right)}\:{dx}\right) \\ $$$$=−\left({x}+{C}−\int\frac{{sinx}+\mathrm{1}}{\mathrm{1}−{sin}^{\mathrm{2}} {x}}\:{dx}\right) \\ $$$$=−\left({x}+{C}−\int\:\frac{{sinx}}{{cos}^{\mathrm{2}} {x}}\:{dx}−\int\:\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}\:{dx}\right) \\ $$$$=−\left({x}+{C}+\int\left({cosx}\right)^{−\mathrm{2}} {dcosx}−\int\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}{dx}\right) \\ $$$$=−\left({x}−\left({cosx}\right)^{−\mathrm{1}} +{C}−\int\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}{dx}\right) \\ $$$$...{and}\:{I}\:{can}'{t}\:{solve}\:{the}\:\int\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}{dx} \\ $$$$ \\ $$$${oh}\:{i}\:{just}\:{found}\:{that}\:{is}\:{tanx}+{C} \\ $$
Question Number 33005 Answers: 0 Comments: 1
$$\:{Given}\:{that}\: \\ $$$$\:\:\:{y}=\:\frac{{sin}\:{x}}{\mathrm{1}\:+\:{cos}\:{x}}\:{find}\:\frac{{dy}}{{dx}} \\ $$$${Evaluate}\: \\ $$$$\:\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \left({x}\:+\:\mathrm{4}\right){dx} \\ $$
Question Number 32999 Answers: 1 Comments: 1
Question Number 32998 Answers: 0 Comments: 1
$${calculate}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\mathrm{4}{n}+\mathrm{1}}{{n}^{\mathrm{2}} \left(\mathrm{3}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:\:. \\ $$
Question Number 32997 Answers: 0 Comments: 1
$${calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{2}{n}+\mathrm{3}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} \left({n}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$
Question Number 32996 Answers: 0 Comments: 1
$${find}\:{the}\:{sequence}\:\left({v}_{{n}} \right)\:{wich}\:{verify}\:\:{v}_{{n}+\mathrm{2}} \:=\sqrt{{v}_{{n}} \:.{v}_{{n}+\mathrm{1}} }\:. \\ $$
Question Number 32995 Answers: 0 Comments: 1
$${let}\:{u}_{\mathrm{0}} ={a}\:,\:{u}_{\mathrm{1}} ={b}\:{and}\:{u}_{{n}+\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left({u}_{{n}} \:+{u}_{{n}+\mathrm{1}} \right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:{u}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow\infty} \:{u}_{{n}} \:\:{if}\:{a}=\mathrm{0} \\ $$$$ \\ $$
Pg 1654 Pg 1655 Pg 1656 Pg 1657 Pg 1658 Pg 1659 Pg 1660 Pg 1661 Pg 1662 Pg 1663
Terms of Service
Privacy Policy
Contact: info@tinkutara.com