Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1658
Question Number 42718 Answers: 0 Comments: 0
$$\mathrm{if}\:\mathrm{p}\left(\mathrm{A}\right)=\mathrm{0}.\mathrm{25}\:\mathrm{and}\:\mathrm{p}\left(\mathrm{B}\right)=\mathrm{0}.\mathrm{8} \\ $$$$\mathrm{then}\:\mathrm{show}\:\mathrm{that}\:\mathrm{0}.\mathrm{05}\leqslant\mathrm{p}\left(\mathrm{A}\cap\mathrm{B}\right)\leqslant\mathrm{0}.\mathrm{25} \\ $$
Question Number 42713 Answers: 1 Comments: 1
Question Number 42711 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{2}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{are}\:\hat {\mathrm{i}}+\mathrm{2}\hat {\mathrm{j}}\:\mathrm{and} \\ $$$$\hat {\mathrm{i}}+\hat {\mathrm{k}}\:,\:\mathrm{then}\:\mathrm{find}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{third}\:\mathrm{side}\:? \\ $$
Question Number 42709 Answers: 1 Comments: 3
$$\mathrm{If}\:\mathrm{f}\left({x}\right)=\:{x}^{\mathrm{3}} \:−\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}\:+{x}\:+\:\frac{\mathrm{1}}{\mathrm{4}}. \\ $$$${T}\mathrm{hen}\:\int_{\frac{\mathrm{1}}{\mathrm{4}}} ^{\frac{\mathrm{3}}{\mathrm{4}}} \:\mathrm{f}\left(\mathrm{f}\left({x}\right)\right)\mathrm{d}{x}\:=? \\ $$
Question Number 42704 Answers: 0 Comments: 4
$${f}\left({x}\right)\:\:=\:\:\frac{{e}^{\mathrm{3}{x}} \:+{e}^{−\mathrm{3}{x}} }{\mathrm{2}} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{f}^{−\mathrm{1}} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:{x}\:{f}\left({x}\right){dx}\:\:\:\:{and}\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx} \\ $$$$\left.\mathrm{3}\right)\:\:{calculate}\:\:\:\int\:\:{f}^{−\mathrm{1}} \left({x}\right){dx} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:{f}\left({x}\right){cos}\left({nx}\right){dx}\:{and}\:{v}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \:\:{f}\left({x}\right){sin}\left({nx}\right){dx} \\ $$$${find}\:{nature}\:{of}\:\Sigma\:\frac{{v}_{{n}} }{{u}_{{n}} } \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{xf}\left({x}\right)\:{dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}\:{e}^{\mathrm{3}{x}} {dx}\:+\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}\:{e}^{−\mathrm{3}{x}} {dx}\:\:\:\left({by}\:{parts}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\:\left[\frac{{x}}{\mathrm{3}}{e}^{\mathrm{3}{x}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:−\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{\mathrm{3}{x}} {dx}\:\:+\left[−\frac{{x}}{\mathrm{3}}{e}^{−\mathrm{3}{x}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:+\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{−\mathrm{3}{x}} {dx}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\frac{{e}^{\mathrm{3}} }{\mathrm{3}}\:−\frac{\mathrm{1}}{\mathrm{9}}\left({e}^{\mathrm{3}} −\mathrm{1}\right)\:−\frac{{e}^{−\mathrm{3}} }{\mathrm{3}}\:−\frac{\mathrm{1}}{\mathrm{9}}\left({e}^{−\mathrm{3}} −\mathrm{1}\right)\right\} \\ $$$$ \\ $$
Question Number 42695 Answers: 0 Comments: 1
$${calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{x}^{\mathrm{4}} }{{x}^{\mathrm{8}\:} \:+\mathrm{16}}{dx} \\ $$
Question Number 42689 Answers: 0 Comments: 3
$${let}\:{f}\left({x}\right)\:=\:\frac{{x}}{{x}^{\mathrm{3}} −\mathrm{2}{x}\:\:+\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{D}_{{f}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{f}^{\left({n}\right)} \left({x}\right)\:\:{then}\:\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$
Question Number 42688 Answers: 0 Comments: 3
$${let}\:{g}\left({x}\right)\:=\frac{{x}−\mathrm{1}}{{x}^{\mathrm{2}} +{x}\:+\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:\:{find}\:{g}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:{g}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{g}\:{at}\:\:{integr}\:{serie}. \\ $$
Question Number 42684 Answers: 0 Comments: 2
$$\mathrm{The}\:\mathrm{coefficient}\:\mathrm{of}\:{x}^{\mathrm{4}} \:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of} \\ $$$$\left(\frac{{x}}{\mathrm{2}}\:−\:\frac{\mathrm{3}}{{x}^{\mathrm{2}} }\right)^{\mathrm{10}} \:\mathrm{is} \\ $$
Question Number 42681 Answers: 0 Comments: 0
Question Number 42680 Answers: 0 Comments: 2
$${calculale}\:\:{A}_{{n}} \left(\alpha\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\alpha{x}^{{n}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:{with} \\ $$$${n}\:{integr}\:{natural}. \\ $$$$ \\ $$
Question Number 42679 Answers: 0 Comments: 2
$${calculate}\:\:\:\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\:\:\:\frac{{sinx}}{{cosx}\:+{tanx}}{dx}\:. \\ $$
Question Number 42673 Answers: 1 Comments: 0
Question Number 42672 Answers: 0 Comments: 0
$$\mathrm{Simplify}:\:\:\:\left(\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\right)\left(\mathrm{x}^{−\mathrm{1}} \:+\:\mathrm{y}^{−\mathrm{1}} \:+\:\mathrm{z}^{−\mathrm{1}} \right)\:=\:\left(\mathrm{x}^{−\mathrm{1}} \:\mathrm{y}^{−\mathrm{1}} \:\mathrm{z}^{−\mathrm{1}} \right)\left(\mathrm{x}\:+\:\mathrm{y}\right)\left(\mathrm{y}\:+\:\mathrm{z}\right)\left(\mathrm{z}\:+\:\mathrm{x}\right) \\ $$
Question Number 42671 Answers: 0 Comments: 0
$$\mathrm{If}\:\mathrm{pqr}\:=\:\mathrm{1} \\ $$$$\mathrm{Hence}\:\mathrm{evaluate}:\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{e}\:+\:\mathrm{f}^{−\mathrm{1}} }\:\:+\:\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{f}\:+\:\mathrm{g}^{−\mathrm{1}} }\:\:+\:\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{g}\:+\:\mathrm{e}^{−\mathrm{1}} } \\ $$
Question Number 42670 Answers: 1 Comments: 3
$$\mathrm{If}\:\:\mathrm{a},\:\mathrm{b}\:\mathrm{and}\:\mathrm{c}\:\:\mathrm{are}\:\mathrm{in}\:\mathrm{a}\:\mathrm{GP}.\:\:\mathrm{Prove}\:\mathrm{that}\:\:\:\mathrm{log}_{\mathrm{n}} \mathrm{a}\:,\:\:\mathrm{log}_{\mathrm{n}} \mathrm{b}\:\:,\:\:\mathrm{log}_{\mathrm{n}} \mathrm{c}\:\:\:\mathrm{are}\:\mathrm{in}\:\mathrm{AP} \\ $$
Question Number 42698 Answers: 1 Comments: 0
$${A}\:{boy}\:{lying}\:{flat}\:{on}\:{level}\:{ground}\:{sees}\:{a}\:{bird}\:\:{on}\:{a}\:{tree}\:{and}\:{the} \\ $$$${angle}\:{of}\:{Elevation}\:{from}\:{the}\:{boy}\:{to}\:{the}\:{birth}\:{is}\:\mathrm{42}°,{if}\:{the}\:{boy} \\ $$$${is}\:\mathrm{6}{m}\:{from}\:{the}\:{tree}.{find}\:{the}\:{hieght}\:{of}\:{the}\:{tree}\:{if}\:{the}\:{bird} \\ $$$${is}\:{at}\:{the}\:{top}\:{of}\:{the}\:{tree} \\ $$
Question Number 42668 Answers: 0 Comments: 0
$$\mathrm{If} \\ $$$$\mid{a}\:\mathrm{sin}^{\mathrm{2}} \theta+{b}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta+{c}\:\mathrm{cos}^{\mathrm{2}} \theta−\frac{\mathrm{1}}{\mathrm{2}}\left({a}−{c}\right)\mid \\ $$$$\:\:\:\leqslant\:\frac{\mathrm{1}}{\mathrm{2}}\:{k},\:\mathrm{then}\:{k}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$
Question Number 42708 Answers: 0 Comments: 1
$${calculate}\:\:{f}\left(\alpha\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{e}^{−\mathrm{2}{x}} −{e}^{−{x}} }{{x}^{\mathrm{2}} }\:{e}^{−\alpha{x}^{\mathrm{2}} } {dx}\:\:{with}\:\alpha>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{e}^{−\mathrm{2}{x}} \:−{e}^{−{x}} }{{x}^{\mathrm{2}} }\:{e}^{−\mathrm{2}{x}^{\mathrm{2}} } {dx} \\ $$
Question Number 42663 Answers: 0 Comments: 0
$${if}\:\mathrm{1}.\mathrm{225}\:{g}\:{of}\:{KClO}_{\mathrm{3}} \:{are}\:{heated}. \\ $$$${Calculate}\:{the}\:{mass}\:{of}\:{potassium}\:{Chloride}\:{produced}. \\ $$$${Detemine}\:{the}\:{volume}\:{of}\:{oxygen}\:{obtained}\:{at}\:{r}.{t}.{p} \\ $$
Question Number 42657 Answers: 0 Comments: 0
Question Number 42656 Answers: 1 Comments: 0
Question Number 42654 Answers: 2 Comments: 2
Question Number 42650 Answers: 0 Comments: 0
Question Number 42649 Answers: 0 Comments: 0
Question Number 42648 Answers: 0 Comments: 0
Pg 1653 Pg 1654 Pg 1655 Pg 1656 Pg 1657 Pg 1658 Pg 1659 Pg 1660 Pg 1661 Pg 1662
Terms of Service
Privacy Policy
Contact: info@tinkutara.com