Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1658

Question Number 42370    Answers: 1   Comments: 1

Question Number 42367    Answers: 1   Comments: 0

lim_(n→∞) ((( ((n),(0) ) ((n),(1) ) ((n),(2) )... ((n),(n) )))^(1/(n^2 +n)) )

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\sqrt[{{n}^{\mathrm{2}} +{n}}]{\:\begin{pmatrix}{{n}}\\{\mathrm{0}}\end{pmatrix}\begin{pmatrix}{{n}}\\{\mathrm{1}}\end{pmatrix}\begin{pmatrix}{{n}}\\{\mathrm{2}}\end{pmatrix}...\begin{pmatrix}{{n}}\\{{n}}\end{pmatrix}}\right) \\ $$

Question Number 42366    Answers: 1   Comments: 0

∫_(2005) ^(2017) (((ln ∣x − 2017∣)^(2017) )/((ln ∣x − 2015∣)^(2017) + (ln ∣x − 2017∣)^(2017) )) dx

$$\underset{\mathrm{2005}} {\overset{\mathrm{2017}} {\int}}\:\frac{\left(\mathrm{ln}\:\mid{x}\:−\:\mathrm{2017}\mid\right)^{\mathrm{2017}} }{\left(\mathrm{ln}\:\mid{x}\:−\:\mathrm{2015}\mid\right)^{\mathrm{2017}} \:+\:\left(\mathrm{ln}\:\mid{x}\:−\:\mathrm{2017}\mid\right)^{\mathrm{2017}} }\:{dx} \\ $$

Question Number 42364    Answers: 0   Comments: 3

∫ ((x + sinx − cosx − 1)/(x + e^x + sinx)) dx

$$\int\:\:\frac{\mathrm{x}\:+\:\mathrm{sinx}\:−\:\mathrm{cosx}\:−\:\mathrm{1}}{\mathrm{x}\:+\:\mathrm{e}^{\mathrm{x}} \:+\:\mathrm{sinx}}\:\mathrm{dx} \\ $$

Question Number 42401    Answers: 0   Comments: 1

calculate Σ_(n=0) ^∞ (((−1)^n )/((n+1)^2 ))

$${calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\: \\ $$

Question Number 42400    Answers: 0   Comments: 0

find lim_(n→+∞) (1/(√n)) Σ_(k=1) ^n (1/((√k) +(√(n−k))))

$${find}\:{lim}_{{n}\rightarrow+\infty} \:\frac{\mathrm{1}}{\sqrt{{n}}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\sqrt{{k}}\:+\sqrt{{n}−{k}}} \\ $$

Question Number 42358    Answers: 1   Comments: 0

∫_( −1) ^( 1) (x^(2015) /(((1 + x))^(1/(2015)) + ((1 − x))^(1/(2015)) )) dx

$$\int_{\:−\mathrm{1}} ^{\:\mathrm{1}} \:\frac{\mathrm{x}^{\mathrm{2015}} }{\sqrt[{\mathrm{2015}}]{\mathrm{1}\:+\:\mathrm{x}}\:\:+\:\:\sqrt[{\mathrm{2015}}]{\mathrm{1}\:−\:\mathrm{x}}\:}\:\:\mathrm{dx} \\ $$

Question Number 42357    Answers: 1   Comments: 0

Question Number 42352    Answers: 1   Comments: 0

Question Number 42345    Answers: 1   Comments: 2

tan 15° =

$$\mathrm{tan}\:\mathrm{15}°\:= \\ $$

Question Number 42336    Answers: 0   Comments: 0

find ∫ ln(x−cosx)dx .

$${find}\:\:\int\:{ln}\left({x}−{cosx}\right){dx}\:. \\ $$

Question Number 42332    Answers: 0   Comments: 0

Question Number 42331    Answers: 1   Comments: 0

Question Number 42330    Answers: 0   Comments: 0

A linear function f(x)=ax + b transforms X={1,2,3,5,9,11} into Y,so that f(5)=13 and f(1)=5 Calculate the mean and Variance of X and Y.

$${A}\:{linear}\:{function}\:{f}\left({x}\right)={ax}\:+\:{b}\:{transforms}\:{X}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{5},\mathrm{9},\mathrm{11}\right\} \\ $$$${into}\:{Y},{so}\:{that}\:{f}\left(\mathrm{5}\right)=\mathrm{13}\:{and}\:{f}\left(\mathrm{1}\right)=\mathrm{5} \\ $$$${Calculate}\:{the}\:{mean}\:{and}\:{Variance}\:{of}\:{X}\:{and}\:{Y}. \\ $$

Question Number 42340    Answers: 2   Comments: 3

Question Number 42320    Answers: 1   Comments: 3

Question Number 42316    Answers: 1   Comments: 2

Question Number 42315    Answers: 2   Comments: 0

the point (2,−1) is reflected in the line x=4 find the image point.

$$\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{point}}\:\left(\mathrm{2},−\mathrm{1}\right)\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{reflected}}\: \\ $$$$\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{line}}\:\:\boldsymbol{{x}}=\mathrm{4}\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{image}}\:\boldsymbol{\mathrm{point}}. \\ $$

Question Number 42314    Answers: 0   Comments: 1

Question Number 42528    Answers: 1   Comments: 0

Solve : ((p+2)/(2p+1)) = ((q+2p)/(2q+p)) = ((1+2q)/(2+q)) = λ. Find (p,q) ?

$$\mathrm{Solve}\:: \\ $$$$\frac{\mathrm{p}+\mathrm{2}}{\mathrm{2p}+\mathrm{1}}\:=\:\frac{\mathrm{q}+\mathrm{2p}}{\mathrm{2q}+\mathrm{p}}\:=\:\frac{\mathrm{1}+\mathrm{2q}}{\mathrm{2}+\mathrm{q}}\:=\:\lambda. \\ $$$$\mathrm{Find}\:\left(\mathrm{p},\mathrm{q}\right)\:? \\ $$

Question Number 42299    Answers: 1   Comments: 0

The set X and Y have five elementseach . Given that ΣX=25,ΣY=55,ΣX^2 =165 and ΣY^2 =765 and a linear Function y= px + q tranforms the set X into the set Y,where p and q are positive constants. a) Find the mean and Variance of X and Y hence,or otherwise , b)find the values of p and q.

$${The}\:{set}\:{X}\:{and}\:{Y}\:{have}\:{five}\:{elementseach}\:. \\ $$$${Given}\:{that}\:\Sigma{X}=\mathrm{25},\Sigma{Y}=\mathrm{55},\Sigma{X}^{\mathrm{2}} =\mathrm{165}\:{and}\:\Sigma{Y}^{\mathrm{2}} =\mathrm{765} \\ $$$${and}\:{a}\:{linear}\:{Function}\:{y}=\:{px}\:+\:{q}\:\:{tranforms}\:{the}\:{set}\:{X}\:{into}\:{the}\:{set}\: \\ $$$${Y},{where}\:{p}\:{and}\:{q}\:{are}\:{positive}\:{constants}. \\ $$$$\left.{a}\right)\:{Find}\:{the}\:{mean}\:{and}\:{Variance}\:{of}\:{X}\:{and}\:{Y} \\ $$$${hence},{or}\:{otherwise}\:, \\ $$$$\left.{b}\right){find}\:{the}\:{values}\:{of}\:{p}\:{and}\:{q}. \\ $$

Question Number 42296    Answers: 1   Comments: 1

solve in Z^2 2x+3y =7

$${solve}\:{in}\:{Z}^{\mathrm{2}} \:\:\:\:\:\:\:\mathrm{2}{x}+\mathrm{3}{y}\:=\mathrm{7} \\ $$

Question Number 42291    Answers: 1   Comments: 0

y = ((1080 − 19x)/(49)) (x,y ∈ Z) Find (x,y)

$${y}\:=\:\frac{\mathrm{1080}\:−\:\mathrm{19}{x}}{\mathrm{49}}\:\:\:\:\:\:\:\:\left({x},{y}\:\in\:\mathbb{Z}\right) \\ $$$$\mathrm{Find}\:\left({x},{y}\right) \\ $$

Question Number 42289    Answers: 1   Comments: 1

log(x+y)=1 log_2 x+log_4 y^2 =4

$$\boldsymbol{\mathrm{log}}\left(\boldsymbol{{x}}+\boldsymbol{{y}}\right)=\mathrm{1} \\ $$$$\boldsymbol{\mathrm{log}}_{\mathrm{2}} \boldsymbol{{x}}+\boldsymbol{\mathrm{log}}_{\mathrm{4}} \boldsymbol{{y}}^{\mathrm{2}} =\mathrm{4} \\ $$

Question Number 42287    Answers: 1   Comments: 0

Your family will be attending a family reunion at a particular beach resort. To avoid hassle, you consider renting a car that charges a flat rate of P2 000 plus P150 per kilometer. Write a piecewise function that model the situation.

$${Your}\:{family}\:{will}\:{be}\:{attending}\:{a}\: \\ $$$${family}\:{reunion}\:{at}\:{a}\:{particular}\:{beach} \\ $$$${resort}.\:{To}\:{avoid}\:{hassle},\:{you}\:{consider} \\ $$$${renting}\:{a}\:{car}\:{that}\:{charges}\:{a}\:{flat}\:{rate} \\ $$$${of}\:{P}\mathrm{2}\:\mathrm{000}\:{plus}\:{P}\mathrm{150}\:{per}\:{kilometer}.\: \\ $$$${Write}\:{a}\:{piecewise}\:{function}\:{that}\: \\ $$$${model}\:{the}\:{situation}. \\ $$

Question Number 42285    Answers: 0   Comments: 2

let S_p =Σ_(n=0) ^∞ cos(((nπ)/p)) and W_p =Σ_(n=0) ^∞ sin(((nπ)/p)) with p natural integr not0 1) find a simple form of S_p and W_p 2) find the value of Σ_(n=0) ^∞ cos(((nπ)/3)) and Σ_(n=0) ^∞ sin(((nπ)/3)) 3) find the value of Σ_(n=0) ^∞ cos(((nπ)/5)) and Σ_(n=0) ^∞ sin(((nπ)/5)) 4) calculate A =Σ_(n=0) ^∞ cos^2 (((nπ)/3)) and B =Σ_(n=0) ^∞ sin^2 (((nπ)/3)) .

$${let}\:\:{S}_{{p}} =\sum_{{n}=\mathrm{0}} ^{\infty} \:\:{cos}\left(\frac{{n}\pi}{{p}}\right)\:\:{and}\:\:{W}_{{p}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{sin}\left(\frac{{n}\pi}{{p}}\right)\:{with}\:{p}\:{natural}\:{integr}\:{not}\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{S}_{{p}} \:{and}\:{W}_{{p}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{cos}\left(\frac{{n}\pi}{\mathrm{3}}\right)\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{sin}\left(\frac{{n}\pi}{\mathrm{3}}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{cos}\left(\frac{{n}\pi}{\mathrm{5}}\right)\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{sin}\left(\frac{{n}\pi}{\mathrm{5}}\right) \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\:{A}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{cos}^{\mathrm{2}} \left(\frac{{n}\pi}{\mathrm{3}}\right)\:{and}\:{B}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{sin}^{\mathrm{2}} \left(\frac{{n}\pi}{\mathrm{3}}\right)\:. \\ $$

  Pg 1653      Pg 1654      Pg 1655      Pg 1656      Pg 1657      Pg 1658      Pg 1659      Pg 1660      Pg 1661      Pg 1662   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com