let j =e^((i2π)/3) and p(x) =(1+xj)^n −(1−xj)^n
1) find the roots of p(x) and factorize inside C[x] p(x)
2) decompose inside C(x) the fration F(x) =(1/(p(x))) .
let f(x) = ∫_0 ^1 (dt/(x +ch(t)))
1) find a explicite form of f(x)
2) calculate ∫_0 ^1 (dt/((x+ch(t))^2 ))
3) find the value of ∫_0 ^1 (dt/(1+ch(t))) and ∫_0 ^1 (dt/(2+ch(t)))
4) find the value of ∫_0 ^1 (dt/((1+cht)^2 )) and ∫_0 ^1 (dt/((2+cht)^2 ))