let S(x)=Σ_(n=0) ^∞ f_n (x) with f_n (x)= (((−1)^n )/(n!(x+n)))
x∈]0,+∞[
1) prove that S id defined .calculate S(1) and
prove that ∀x>0 xS(x) −S(x+1) =(1/e)
2) prove that S is C^∞ on R^(+∗)
3) prove that S(x) ∼ (1/x) (x→0^+ ) .
let f_n (x)= n^x e^(−nx) with x>0
1) study the simple and uniform convervence for
Σ f_n (x)
2) let S(x)= Σ_(n=1) ^∞ f_n (x).prove that
S(x) ∼ (1/x) ( x→0^+ )
Qn:(a)
given A and B are disjoint sets
shade in venn diagram
(i)B∩C (ii)A−(B∪C) (iii)(B∪C)−A
Qn:(b)
Given that ∣A∣=19 ∣B∣=23 ∣C∣=24
∣A∪B∣=30 ∣(A∩B)−C∣=5 ∣(B∩C)∣=10
∣(A∪B)^′ ∣=20 and ∣C−(A∪B)∣=10
then find
(i)∣(A∩C)∣ (ii)∣(B−′C)∣′
(iii)∣𝛍∣ (iv)∣(B′∪C)∩A′∣
Let function f(x) be defined as
f(x)= x^2 +bx+c , where b,c∈R .
And f(1) − 2f(5) +f(9) =32.
Find no. of ordered pairs (b,c)
such that ∣f(x)∣≤8 ∀ x∈ [1,9] ?