Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1658
Question Number 36024 Answers: 1 Comments: 2
Question Number 36021 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{hypotenuse}\:\mathrm{never}\:\mathrm{be} \\ $$$$\mathrm{even}\:\mathrm{of}\:\mathrm{a}\:\mathrm{right}\:\mathrm{angled}\:\mathrm{triangle}\:\mathrm{whose} \\ $$$$\mathrm{positive}\:\mathrm{integer}\:\mathrm{sides}\:\mathrm{are}\:\mathrm{relatively}\:\mathrm{prime}. \\ $$
Question Number 36019 Answers: 3 Comments: 0
$${If}\:{a}+{b}+{c}=\mathrm{0}\:{show}\:{that} \\ $$$$\left(\frac{{a}}{{b}−{c}}+\frac{{b}}{{c}−{a}}+\frac{{c}}{{a}−{b}}\right)\left(\frac{{b}−{c}}{{a}}+\frac{{c}−{a}}{{b}}\:+\frac{{a}−{b}}{{c}}\right)=\mathrm{9} \\ $$
Question Number 36018 Answers: 1 Comments: 0
$${Find}\:{the}\:{value}\:{of} \\ $$$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {{lim}}\:\frac{{sinx}−\left({sinx}\right)^{{sinx}} }{\mathrm{1}−{sinx}+{lnsinx}} \\ $$
Question Number 36011 Answers: 0 Comments: 2
$$\mathrm{simplify}:\:\:'{interval}\:{number}' \\ $$$$\left(\mathrm{1},\mathrm{6}\right)\cup\left(\mathrm{3},\mathrm{7}\right) \\ $$
Question Number 36010 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)=\:\:\frac{{x}}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:\:{at}\:{integr}\:{serie}\:. \\ $$
Question Number 36009 Answers: 0 Comments: 1
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{xdx}}{\left(\mathrm{2}{x}+\mathrm{1}+{i}\right)^{\mathrm{3}} }\:\:{with}\:{i}^{\mathrm{2}} \:=−\mathrm{1}\:. \\ $$
Question Number 35990 Answers: 0 Comments: 2
$${calculate}\:\int_{\mathrm{2}} ^{\mathrm{5}} \:\:\:\:\frac{{xdx}}{\mathrm{2}{x}+\mathrm{1}\:+\sqrt{{x}−\mathrm{1}}} \\ $$
Question Number 35988 Answers: 1 Comments: 2
$${let}\:{f}\left({x}\right)\:=\:\frac{{x}+\mathrm{2}}{{x}^{\mathrm{3}} −\mathrm{4}{x}\:+\mathrm{3}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$
Question Number 35987 Answers: 0 Comments: 4
$${let}\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{3}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$
Question Number 35986 Answers: 0 Comments: 5
$${let}\:{f}\left({x}\right)=\:\sqrt{\mathrm{1}\:+{n}\:{x}^{\mathrm{2}} }\:\:\:−{nx}\:+\mathrm{3}\:\:{with}\:{n}\:{integr} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{lim}_{{x}\rightarrow+\infty} \:{and}\:{lim}_{{x}\rightarrow−\infty} {f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{give}\:{the}\:{equation}\:{of}\:{assymptote}\:{of}\:{f}\:{at} \\ $$$${point}\:\:{A}\left(\mathrm{1},{f}\left(\mathrm{1}\right)\right)\:. \\ $$$$\left.\mathrm{4}\right){calculate}\:{lim}_{{x}\rightarrow+\infty} \:\frac{{f}\left({x}\right)}{{x}}\:{and}\:{lim}_{{x}\rightarrow−\infty} \:\:\frac{{f}\left({x}\right)}{{x}}\:. \\ $$
Question Number 35983 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{2}\sqrt{{t}}\:+\mathrm{1}}{{t}^{\mathrm{5}} \:\:\:+\mathrm{3}}{dt}\:\:. \\ $$
Question Number 35982 Answers: 0 Comments: 0
$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−{arctsn}\left(\:\mathrm{1}+{tx}^{\mathrm{2}} \right)} {dx}\:\:{with}\:{t}\:{from}\:{R} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{'} \left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({t}\right)\:. \\ $$
Question Number 36003 Answers: 2 Comments: 0
$${x}\begin{bmatrix}{\mathrm{2}}\\{\mathrm{1}}\end{bmatrix}+{y}\begin{bmatrix}{\mathrm{3}}\\{\mathrm{5}}\end{bmatrix}+\begin{bmatrix}{−\mathrm{8}}\\{−\mathrm{11}}\end{bmatrix}=\mathrm{0} \\ $$$${find}\:{x}\:{and}\:{y} \\ $$
Question Number 35968 Answers: 2 Comments: 1
Question Number 35960 Answers: 0 Comments: 3
$$\mathrm{Solve}\:\mathrm{using}\:\mathrm{Residue}\:\mathrm{Theorem} \\ $$$$\mathrm{I}\:=\:\int_{−\infty} ^{+\infty} \:\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} \:+\:\mathrm{16}}\:{dx} \\ $$
Question Number 35951 Answers: 1 Comments: 3
$$\left({cos}\theta+{cos}\beta/{sin}\theta−{sin}\beta\right)=\left({sin}\theta+{sin}\beta/{cos}\theta−{cos}\beta\right)\:{prove}\:{ghis} \\ $$
Question Number 35949 Answers: 1 Comments: 1
$$\int_{\mathrm{0}} ^{\:\:\alpha} \frac{\mathrm{tan}\:\theta}{\sqrt{{a}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta−{b}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}}\:{d}\theta\:=\:? \\ $$
Question Number 35940 Answers: 1 Comments: 1
Question Number 35939 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{4}} {\mathrm{lim}}\:\left(\:\frac{{a}\mathrm{sin}\:\left({x}−\mathrm{4}\right)\:+\:\mathrm{cos}\:\pi{x}\:−\mathrm{1}}{{x}−\mathrm{4}}\:\right)^{\frac{{x}−\mathrm{2}}{{x}−\mathrm{3}}} =\:\mathrm{4} \\ $$$${Find}\:'{a}'\:? \\ $$
Question Number 35933 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{differentiate}}\:\boldsymbol{\mathrm{from}} \\ $$$$\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{first}}\:\boldsymbol{\mathrm{principle}} \\ $$$$\boldsymbol{\mathrm{y}}=\frac{\mathrm{1}}{\sqrt{\boldsymbol{{x}}}} \\ $$
Question Number 35920 Answers: 1 Comments: 1
$$\int\:\frac{{e}^{\mathrm{2}{x}} +\mathrm{1}}{\mathrm{2}{e}^{{x}} −\mathrm{1}}\:{dx}\:=\:? \\ $$
Question Number 35915 Answers: 1 Comments: 0
$${if}\:{P}\left({A}\right)\:{and}\:{P}\left({B}\right)\:{are}\:{independent} \\ $$$${events}\:{then}\:{P}\left({A}\mid{B}\right)=?? \\ $$
Question Number 35909 Answers: 1 Comments: 4
$$\int\frac{\mathrm{7}{x}−\mathrm{6}}{\left({x}^{\mathrm{2}} +\mathrm{25}\right)\sqrt{\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\mathrm{4}}}\:{dx}\:=\:? \\ $$
Question Number 35899 Answers: 0 Comments: 2
$${Evaluate}\:{log}_{\sqrt{\mathrm{2}}} \mathrm{4}+{log}_{\mathrm{1}/\mathrm{2}} \mathrm{16}−{log}_{\mathrm{4}} \mathrm{32} \\ $$
Question Number 35897 Answers: 0 Comments: 2
$${log}_{{x}^{\mathrm{1}/\mathrm{2}\:} } \mathrm{64}=\mathrm{3}.\:{What}\:{is}\:{x}? \\ $$
Pg 1653 Pg 1654 Pg 1655 Pg 1656 Pg 1657 Pg 1658 Pg 1659 Pg 1660 Pg 1661 Pg 1662
Terms of Service
Privacy Policy
Contact: info@tinkutara.com