Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1657

Question Number 41292    Answers: 1   Comments: 0

Question Number 41291    Answers: 2   Comments: 0

Let ABCD be a parallelogram whose diagonals intersect at P and ley O be the origin, then OA^(→) +OB^(→) +OC^(→) +OD^(→) equals

$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{parallelogram}\:\mathrm{whose} \\ $$$$\mathrm{diagonals}\:\mathrm{intersect}\:\mathrm{at}\:{P}\:\mathrm{and}\:\mathrm{ley}\:{O}\:\mathrm{be} \\ $$$$\mathrm{the}\:\mathrm{origin},\:\mathrm{then}\:\overset{\rightarrow} {{OA}}+\overset{\rightarrow} {{OB}}+\overset{\rightarrow} {{OC}}+\overset{\rightarrow} {{OD}}\: \\ $$$$\mathrm{equals} \\ $$

Question Number 41290    Answers: 1   Comments: 0

An electric pole PN is such that PN=12cm where N is the top of the pole and P the base .At a given moment of the day the shadow of the pole PN′ = PN. find a) the length NN′ b) the bearing of P from N.

$${An}\:{electric}\:{pole}\:{PN}\:{is}\:{such}\:{that}\:{PN}=\mathrm{12}{cm}\:{where}\:{N}\:{is}\:{the}\:{top}\:{of}\:{the}\:{pole}\:{and}\:{P}\:{the}\:{base} \\ $$$$.{At}\:{a}\:{given}\:{moment}\:{of}\:{the}\:{day}\:{the}\:\boldsymbol{{shadow}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{pole}}\:{PN}'\:=\:{PN}.\:{find}\: \\ $$$$\left.{a}\right)\:{the}\:{length}\:{NN}' \\ $$$$\left.{b}\right)\:{the}\:{bearing}\:{of}\:{P}\:{from}\:{N}. \\ $$

Question Number 41288    Answers: 1   Comments: 0

by using the knowledge of sequence and series show that the compound interest is given by An=P(1+((RT)/(100)))^n

$$\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{using}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{knowledge}}\:\boldsymbol{\mathrm{of}}\: \\ $$$$\boldsymbol{\mathrm{sequence}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{series}}\:\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}} \\ $$$$\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{compound}}\:\boldsymbol{\mathrm{interest}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{given}}\:\boldsymbol{\mathrm{by}} \\ $$$$\boldsymbol{\mathrm{An}}=\boldsymbol{\mathrm{P}}\left(\mathrm{1}+\frac{\boldsymbol{\mathrm{RT}}}{\mathrm{100}}\right)^{\boldsymbol{\mathrm{n}}} \\ $$

Question Number 41280    Answers: 1   Comments: 1

find f(x) = ∫_0 ^1 arctan(xt^2 )dt

$${find}\:\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{arctan}\left({xt}^{\mathrm{2}} \right){dt} \\ $$

Question Number 41279    Answers: 0   Comments: 1

let f(x)=∫_0 ^∞ arctan(xt^2 )dt . find a explicite form of f^′ (x)

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:{arctan}\left({xt}^{\mathrm{2}} \right){dt}\:. \\ $$$${find}\:\:{a}\:{explicite}\:{form}\:{of}\:{f}^{'} \left({x}\right) \\ $$

Question Number 41273    Answers: 0   Comments: 2

find f(x)=∫_0 ^(+∞) arctan(xt^2 )dt with x fromR .

$${find}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{+\infty} \:{arctan}\left({xt}^{\mathrm{2}} \right){dt}\:\:{with}\:{x}\:{fromR}\:. \\ $$

Question Number 41286    Answers: 0   Comments: 0

find S_n =Σ_(k=0) ^n (1/(3k+1)) interms of H_n =Σ_(k=1) ^n (1/k)

$${find}\:\:{S}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\mathrm{1}}{\mathrm{3}{k}+\mathrm{1}}\:{interms}\:{of}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$

Question Number 41255    Answers: 2   Comments: 1

Question Number 41252    Answers: 1   Comments: 1

Question Number 41248    Answers: 2   Comments: 4

Question Number 41246    Answers: 2   Comments: 1

Question Number 41236    Answers: 2   Comments: 0

find the value of Σ_(n=2) ^∞ ((3n^2 +1)/((n^2 −1)^3 ))

$${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\:\frac{\mathrm{3}{n}^{\mathrm{2}} \:+\mathrm{1}}{\left({n}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} } \\ $$

Question Number 41233    Answers: 2   Comments: 1

Question Number 41231    Answers: 1   Comments: 1

Question Number 41214    Answers: 3   Comments: 1

Question Number 41203    Answers: 1   Comments: 5

Question Number 41174    Answers: 1   Comments: 0

Question Number 41167    Answers: 1   Comments: 0

The LCM and the GCF of three intergers are 180 and 3 respectively. Two numbers are 45 and 60. What is the third number

$${The}\:{LCM}\:{and}\:{the}\:{GCF}\:{of}\:{three} \\ $$$${intergers}\:{are}\:\mathrm{180}\:{and}\:\mathrm{3}\:{respectively}. \\ $$$${Two}\:{numbers}\:{are}\:\mathrm{45}\:{and}\:\mathrm{60}. \\ $$$${What}\:{is}\:{the}\:{third}\:{number} \\ $$

Question Number 41160    Answers: 3   Comments: 3

Question Number 41157    Answers: 2   Comments: 3

Question Number 41198    Answers: 2   Comments: 3

evaluate ln(−1)

$$\mathrm{evaluate}\:\boldsymbol{\mathrm{ln}}\left(−\mathrm{1}\right) \\ $$

Question Number 41151    Answers: 1   Comments: 2

Proof that : (d^n /dx^n )(cos x) = cos (x+((nπ)/2)) (d^n /dx^n )(sin x) = sin (x+((nπ)/2)) where n∈Z.

$$\mathrm{Proof}\:\mathrm{that}\::\:\frac{\mathrm{d}^{\mathrm{n}} }{\mathrm{d}{x}^{{n}} }\left(\mathrm{cos}\:{x}\right)\:=\:\mathrm{cos}\:\left({x}+\frac{{n}\pi}{\mathrm{2}}\right) \\ $$$$\frac{\mathrm{d}^{\mathrm{n}} }{\mathrm{d}{x}^{{n}} }\left(\mathrm{sin}\:{x}\right)\:=\:\mathrm{sin}\:\left({x}+\frac{{n}\pi}{\mathrm{2}}\right) \\ $$$$\mathrm{where}\:\mathrm{n}\in\mathbb{Z}. \\ $$

Question Number 41148    Answers: 1   Comments: 0

Calculate the speed of an electron whose kinetic energy is equal to 2% of its rest mass.

$${Calculate}\:{the}\:{speed}\:{of}\:{an}\:{electron} \\ $$$${whose}\:{kinetic}\:{energy}\:{is}\:{equal}\:{to} \\ $$$$\mathrm{2\%}\:{of}\:{its}\:{rest}\:{mass}. \\ $$

Question Number 41146    Answers: 1   Comments: 1

Question Number 41141    Answers: 0   Comments: 1

If X= [(3,(−4)),(1,(−1)) ], the value of X^n is

$$\mathrm{If}\:{X}=\begin{bmatrix}{\mathrm{3}}&{−\mathrm{4}}\\{\mathrm{1}}&{−\mathrm{1}}\end{bmatrix},\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{X}^{{n}} \mathrm{is} \\ $$

  Pg 1652      Pg 1653      Pg 1654      Pg 1655      Pg 1656      Pg 1657      Pg 1658      Pg 1659      Pg 1660      Pg 1661   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com