Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1657
Question Number 42790 Answers: 1 Comments: 0
$$\left.\mathrm{1}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}}{\mathrm{1}+{t}^{\mathrm{4}} }\:{dt} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{t}}{\mathrm{1}+{t}^{\mathrm{4}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{calculste}\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{t}}{\mathrm{1}+{t}^{\mathrm{4}} }{dt}\: \\ $$
Question Number 42789 Answers: 0 Comments: 1
$${let}\:{u}_{\mathrm{0}} =\mathrm{1}\:{and}\:{u}_{{n}+\mathrm{1}} \:={u}_{{n}} \:+\:\frac{\mathrm{2}}{{u}_{{n}} } \\ $$$${study}\:{the}\:{convervence}\:{of}\:\left({u}_{{n}} \right) \\ $$
Question Number 42788 Answers: 1 Comments: 1
$${calculate}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{\mathrm{2}{x}}{{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right)}\:−{cosx} \\ $$
Question Number 42787 Answers: 0 Comments: 0
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{\mathrm{1}}{\left({sinx}\right)^{\mathrm{4}} }\left\{\:{sin}\left(\frac{{x}}{\mathrm{1}−{x}}\right)−\frac{{sinx}}{\mathrm{1}−{sinx}}\right\} \\ $$
Question Number 42786 Answers: 1 Comments: 1
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{\mathrm{1}−\frac{{x}}{{sinx}}}{{x}^{\mathrm{2}} } \\ $$
Question Number 42785 Answers: 1 Comments: 1
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{\mathrm{1}+{x}\:−{e}^{{arcsinx}} }{{x}^{\mathrm{2}} } \\ $$
Question Number 42784 Answers: 0 Comments: 0
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:{ln}\left(\frac{{e}^{{x}^{\mathrm{2}} −{x}} \:−\mathrm{1}}{{x}}\right) \\ $$
Question Number 42783 Answers: 0 Comments: 0
$${calculate}\:{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{4}}} \:\:\:\:\mid{tan}\left(\mathrm{2}{x}\right)\mid^{{sin}\left(\mathrm{4}{x}\right)} \\ $$
Question Number 42782 Answers: 0 Comments: 0
$${calculate}\:\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:\left\{{tan}\left(\frac{\pi}{\mathrm{2}+{x}}\right)\right\}^{{x}} \\ $$
Question Number 42781 Answers: 1 Comments: 1
$${calculate}\:{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{4}}} \:\:\:\:\:\:\frac{{sin}\left(\mathrm{2}{x}\right){sin}\left({x}−\frac{\pi}{\mathrm{4}}\right)}{{sinx}\:−{cosx}} \\ $$
Question Number 42780 Answers: 0 Comments: 0
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:\:\:\:\frac{\left[\left({x}+\mathrm{1}\right)^{\mathrm{2}} \right]\:−\left[\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} \right]}{{x}} \\ $$
Question Number 42779 Answers: 0 Comments: 1
$${calculate}\:{lim}_{{x}\rightarrow−\infty} \:\:\left({x}^{\mathrm{4}} +\mathrm{1}\right){tan}\left(\frac{\mathrm{1}}{{x}}\right)\:. \\ $$
Question Number 42776 Answers: 1 Comments: 0
$$\mathrm{Solve}:\:\:\:\:\:\mathrm{q}^{\mathrm{4}} \:−\:\mathrm{40q}^{\mathrm{2}} \:+\:\mathrm{q}\:+\:\mathrm{384}\:=\:\mathrm{0} \\ $$
Question Number 42775 Answers: 0 Comments: 2
$${my}\:{mother}\:{fell}\:{down}\:{and}\:{broke}\:{waist}...{so}\:{i}\:{ambusy} \\ $$$${for}\:{mother}...{age}\:\mathrm{85}...{i}\:{am}\:{now}\:{kolkata}\:{for}\:{mother} \\ $$
Question Number 42773 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{e}^{{t}} }{\mathrm{1}+{x}^{{t}} }\:{dt}\:\:\:\:\:{with}\:\mathrm{0}<{x}<\mathrm{1} \\ $$$${give}\:{f}\left({x}\right)\:{at}\:{form}\:{of}\:{serie}\:. \\ $$
Question Number 42772 Answers: 0 Comments: 1
$$\mathrm{mag}\int\mathrm{2x}+\mathrm{x}^{\mathrm{3}} \\ $$$$= \\ $$
Question Number 42771 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\:{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left({x}\right)}{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left({x}\right)}{\mathrm{1}−{x}^{\mathrm{4}} }{dx} \\ $$
Question Number 42770 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right){find}\:{A}\left(\xi\right)\:=\:\int_{\mathrm{0}} ^{\xi} {ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right){dx}\:\:{with}\:\:\mathrm{0}<\xi<\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right){dx} \\ $$
Question Number 42769 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{xe}^{−{x}} }\:{dx}\:. \\ $$
Question Number 42768 Answers: 0 Comments: 0
Question Number 42766 Answers: 0 Comments: 0
Question Number 42765 Answers: 0 Comments: 1
Question Number 42763 Answers: 0 Comments: 1
$$\mathrm{For}\:{A}\:=\:\left\{\mathrm{1},\:\mathrm{2},\:\mathrm{3}\right\},\:\mathrm{let}\:{B}\:\mathrm{be}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{2}−\mathrm{element}\:\mathrm{sets} \\ $$$$\mathrm{belonging}\:\mathrm{to}\:{P}\left({A}\right)\:\mathrm{and}\:\mathrm{let}\:{C}\:\mathrm{be}\:\mathrm{the}\:\mathrm{set}\:\mathrm{consisting}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{sets}\:\mathrm{that}\:\mathrm{are}\:\mathrm{intersections}\:\mathrm{of}\:\mathrm{two}\:\mathrm{distinct}\:\mathrm{elements} \\ $$$$\mathrm{of}\:{B}.\:\mathrm{Determine}\:{C} \\ $$$$ \\ $$$${P}\left({A}\right)\:=\:\mathrm{power}\:\mathrm{set}\:\mathrm{of}\:{A} \\ $$
Question Number 42761 Answers: 0 Comments: 0
Question Number 42758 Answers: 0 Comments: 0
Question Number 42756 Answers: 0 Comments: 1
$$\mathrm{33}\sqrt{\mathrm{67}} \\ $$
Pg 1652 Pg 1653 Pg 1654 Pg 1655 Pg 1656 Pg 1657 Pg 1658 Pg 1659 Pg 1660 Pg 1661
Terms of Service
Privacy Policy
Contact: info@tinkutara.com