cos 2x=2cos^2 −1
cos 3x=4cos^3 x−3cos x
cos 4x=8cos^4 x−8cos^2 x+1
cos 5x=16cos^5 x−20cos^3 +5cos x
cos 6x=32cos^6 x−48cos^4 x+18cos^2 x−1
cos 7x=64cos^7 x−112cos^5 x+56cos^3 x−4cos x
cos 8x=128cos^8 x−256cos^6 x+160cos^4 x−32cos^2 x+1
let f(x) = ∫_0 ^(π/2) ((cosθ)/(1+xsinθ))dθ
1) determine a explicit form of f(x)
2) calculate ∫_0 ^(π/2) ((sin(2θ))/((1+xsinθ)^2 ))dθ
3) find the values of ∫_0 ^(π/2) ((cosθ)/(1+2cosθ))dθ and ∫_0 ^(π/2) ((sin(2θ))/((1+3sinθ)^2 ))dθ .