Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1656

Question Number 40091    Answers: 0   Comments: 1

find a equivalent to f(x)=cos(sinx) for x∈v(0) 2) find a equivalent to g(x)= tan((π/(2x+1))) (x→0)

$${find}\:{a}\:{equivalent}\:{to}\:{f}\left({x}\right)={cos}\left({sinx}\right)\:{for}\:{x}\in{v}\left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{equivalent}\:{to}\:{g}\left({x}\right)=\:{tan}\left(\frac{\pi}{\mathrm{2}{x}+\mathrm{1}}\right)\:\left({x}\rightarrow\mathrm{0}\right) \\ $$

Question Number 40090    Answers: 0   Comments: 1

let f(x)= 1−[x]−[1−x] 1) prove that f is periodic with period 1 2) give a expression of f(x) when x∈[0,1[

$${let}\:{f}\left({x}\right)=\:\mathrm{1}−\left[{x}\right]−\left[\mathrm{1}−{x}\right] \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{f}\:{is}\:{periodic}\:{with}\:{period}\:\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{give}\:{a}\:{expression}\:{of}\:{f}\left({x}\right)\:{when}\:\:{x}\in\left[\mathrm{0},\mathrm{1}\left[\right.\right. \\ $$

Question Number 40089    Answers: 0   Comments: 0

find lim _(x→−∞) ((x^4 +1)/(cotan((1/x))))

$${find}\:\:{lim}\:_{{x}\rightarrow−\infty} \:\:\:\:\:\frac{{x}^{\mathrm{4}} \:+\mathrm{1}}{{cotan}\left(\frac{\mathrm{1}}{{x}}\right)} \\ $$

Question Number 40088    Answers: 0   Comments: 0

calculate lim_(x→+∞) x^2 sin((1/x))

$${calculate}\:\:\:{lim}_{{x}\rightarrow+\infty} \:\:\:{x}^{\mathrm{2}} {sin}\left(\frac{\mathrm{1}}{{x}}\right) \\ $$

Question Number 40087    Answers: 0   Comments: 0

find lim_(x→0) sinx{x−[(1/x)]}

$${find}\:\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:{sinx}\left\{{x}−\left[\frac{\mathrm{1}}{{x}}\right]\right\} \\ $$

Question Number 40086    Answers: 0   Comments: 0

find lim_(x→0) x [(1/x)]

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:{x}\:\left[\frac{\mathrm{1}}{{x}}\right] \\ $$

Question Number 40085    Answers: 0   Comments: 0

calculate lim_(x→(π/3)) ((tan(x)tan(x−(π/3)))/(1−2cosx))

$${calculate}\:{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{3}}} \:\:\:\:\:\frac{{tan}\left({x}\right){tan}\left({x}−\frac{\pi}{\mathrm{3}}\right)}{\mathrm{1}−\mathrm{2}{cosx}} \\ $$

Question Number 40084    Answers: 0   Comments: 0

calculate lim_(x→(π/4)) ((sin(2x)sin(x−(π/4)))/(sinx −cosx))

$${calculate}\:{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{4}}} \:\:\:\:\frac{{sin}\left(\mathrm{2}{x}\right){sin}\left({x}−\frac{\pi}{\mathrm{4}}\right)}{{sinx}\:−{cosx}} \\ $$

Question Number 40083    Answers: 1   Comments: 2

solve for x: 5^x + 5x = 140

$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x}:\:\:\:\:\:\mathrm{5}^{\mathrm{x}} \:+\:\mathrm{5x}\:=\:\mathrm{140} \\ $$

Question Number 40166    Answers: 1   Comments: 0

Question Number 40067    Answers: 0   Comments: 2

let S_n = Σ_(k=1) ^n (((−1)^k )/k) 1) calculate S_n interms of H_n 2) find lim_(n→+∞) S_n 3) let W_n = Σ_(1≤i<j≤n) (((−1)^(i+j) )/(i.j)) prove that (W_n ) is convergent and calculste its limit.

$${let}\:\:{S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{S}_{{n}} \:{interms}\:{of}\:{H}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{let}\:{W}_{{n}} =\:\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} \frac{\left(−\mathrm{1}\right)^{{i}+{j}} }{{i}.{j}} \\ $$$${prove}\:{that}\:\left({W}_{{n}} \right)\:{is}\:{convergent}\:{and}\:{calculste}\:{its} \\ $$$${limit}. \\ $$

Question Number 40063    Answers: 1   Comments: 0

Question Number 40060    Answers: 0   Comments: 0

Mr John bought a four roomed house for 2520000bucks. these rooms are rented out to four students ,at 9000 buck per month for each room. a) find the rents collected at the end of each year.if each year 72000 bucks is spent on repairs. b) find the real annual income on the house

$${Mr}\:{John}\:{bought}\:{a}\:{four}\:{roomed} \\ $$$${house}\:{for}\:\mathrm{2520000}{bucks}. \\ $$$${these}\:{rooms}\:{are}\:{rented}\:{out} \\ $$$${to}\:{four}\:{students}\:,{at}\:\mathrm{9000}\:{buck} \\ $$$${per}\:{month}\:{for}\:{each}\:{room}. \\ $$$$\left.{a}\right)\:{find}\:{the}\:{rents}\:{collected}\:{at}\:{the}\:{end} \\ $$$${of}\:{each}\:{year}.{if}\:{each}\:{year}\:\mathrm{72000}\:{bucks} \\ $$$${is}\:{spent}\:{on}\:{repairs}. \\ $$$$\left.{b}\right)\:{find}\:{the}\:{real}\:{annual}\:{income}\:{on}\:{the}\:{house} \\ $$$$ \\ $$

Question Number 40058    Answers: 2   Comments: 0

Question Number 40057    Answers: 1   Comments: 0

Mike and Stev had 620 bucks each to spend . Mike used all his money to buy 3pens and 4books,while Stev bought 4pens and 3books and had a balance of 50 bucks.Find the cost of a pen and book.

$${Mike}\:{and}\:{Stev}\:{had}\:\mathrm{620}\:{bucks} \\ $$$${each}\:{to}\:{spend}\:.\:{Mike}\:{used}\:{all} \\ $$$${his}\:{money}\:{to}\:{buy}\:\mathrm{3}{pens}\:{and}\: \\ $$$$\mathrm{4}{books},{while}\:{Stev}\:{bought}\: \\ $$$$\mathrm{4}{pens}\:{and}\:\mathrm{3}{books}\:{and}\:{had}\:{a} \\ $$$${balance}\:{of}\:\mathrm{50}\:{bucks}.{Find} \\ $$$${the}\:{cost}\:{of}\:{a}\:{pen}\:{and}\:{book}. \\ $$$$ \\ $$

Question Number 40055    Answers: 1   Comments: 0

A boy starts from a point A and moves on a bearing of 20° to a point B which is 5km from A.He then changes his course to a bearing of 11° and moves to a point C which is 12km from B. Find the distance and bearing from C to A.

$${A}\:{boy}\:{starts}\:{from}\:{a}\:{point}\:{A} \\ $$$${and}\:{moves}\:{on}\:{a}\:{bearing}\:{of} \\ $$$$\mathrm{20}°\:{to}\:{a}\:{point}\:{B}\:{which}\:{is} \\ $$$$\mathrm{5}{km}\:{from}\:{A}.{He}\:{then}\:{changes} \\ $$$${his}\:{course}\:{to}\:{a}\:{bearing}\:{of}\: \\ $$$$\mathrm{11}°\:{and}\:{moves}\:{to}\:{a}\:{point}\:{C}\:{which}\:{is} \\ $$$$\mathrm{12}{km}\:{from}\:{B}. \\ $$$${Find}\:{the}\:{distance}\:{and}\:{bearing} \\ $$$${from}\:{C}\:{to}\:{A}. \\ $$$$ \\ $$

Question Number 40054    Answers: 0   Comments: 0

3 boys X,Y,and Z are standing 3 metres north of each other if X and Z are both 1.5m tall and Y is 2m tall. Find a) the bearing from each of the boys b) the bearing if Y moves to the left.

$$\mathrm{3}\:{boys}\:{X},{Y},{and}\:{Z}\:{are}\:{standing} \\ $$$$\mathrm{3}\:{metres}\:{north}\:{of}\:{each}\:{other} \\ $$$${if}\:{X}\:{and}\:{Z}\:{are}\:{both}\:\mathrm{1}.\mathrm{5}{m}\:{tall} \\ $$$${and}\:{Y}\:{is}\:\mathrm{2}{m}\:{tall}. \\ $$$${Find} \\ $$$$\left.{a}\right)\:{the}\:{bearing}\:{from}\:{each}\:{of} \\ $$$${the}\:{boys} \\ $$$$\left.{b}\right)\:{the}\:{bearing}\:{if}\:{Y}\:{moves} \\ $$$${to}\:{the}\:{left}. \\ $$

Question Number 40140    Answers: 1   Comments: 1

calculate ∫_0 ^(π/2) ((sin(x)dx)/(cos^2 x +a^2 sin^2 x))dx

$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{sin}\left({x}\right){dx}}{{cos}^{\mathrm{2}} {x}\:+{a}^{\mathrm{2}} \:{sin}^{\mathrm{2}} {x}}{dx} \\ $$

Question Number 40052    Answers: 2   Comments: 0

f ′(x)=g(x) and g ′(x)=−f(x) for all real x andf(5)=2=f ′(5) then f^2 (10)+g^2 (10) is (a) 2 (b) 4 (c) 8 (d) none

$${f}\:'\left({x}\right)={g}\left({x}\right)\:{and}\:\:{g}\:'\left({x}\right)=−{f}\left({x}\right)\:{for} \\ $$$${all}\:{real}\:\:{x}\:\:{andf}\left(\mathrm{5}\right)=\mathrm{2}={f}\:'\left(\mathrm{5}\right)\:{then} \\ $$$${f}^{\mathrm{2}} \left(\mathrm{10}\right)+{g}^{\mathrm{2}} \left(\mathrm{10}\right)\:{is} \\ $$$$\left({a}\right)\:\:\:\mathrm{2}\:\:\:\:\:\left({b}\right)\:\:\:\mathrm{4}\:\:\:\:\:\left({c}\right)\:\:\:\:\mathrm{8}\:\:\:\:\:\left({d}\right)\:{none} \\ $$

Question Number 40048    Answers: 0   Comments: 2

Question Number 40047    Answers: 0   Comments: 0

let S_n = Σ_(k=0) ^n (((−1)^k )/(2k+1)) 1) give S_n interms of H_n 2)find lim_(n→+∞) S_n 3) let W_n = Σ_(k=0) ^n (((−1)^k )/(4k^2 −1)) find W_n interms of H_n calculate lim_(n→+∞) W_n

$${let}\:{S}_{{n}} \:=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:{give}\:{S}_{{n}} \:{interms}\:{of}\:{H}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} {S}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{let}\:{W}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{4}{k}^{\mathrm{2}} −\mathrm{1}} \\ $$$${find}\:{W}_{{n}} \:\:{interms}\:{of}\:{H}_{{n}} \\ $$$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:{W}_{{n}} \\ $$

Question Number 40046    Answers: 0   Comments: 2

let S_n = Σ_(k=2) ^n (((−1)^k )/(k^2 −1)) 1) calculate S_n interms of H_n ( H_n =Σ_(k=1) ^n (1/k)) 2) find lim_(n→+∞) S_n

$${let}\:{S}_{{n}} =\:\sum_{{k}=\mathrm{2}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\:{S}_{{n}} \:\:{interms}\:{of}\:{H}_{{n}} \\ $$$$\left(\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \\ $$$$ \\ $$

Question Number 40044    Answers: 0   Comments: 2

let f(t) = ∫_0 ^(π/2) ln( cosx +t sinx) 1) calculate f(0) 2) calculate f^′ (t) then find a simple form of f(t) 3) calculate ∫_0 ^(π/2) ln(cosx +2 sinx)dx 4) calculate ∫_0 ^(π/2) ln((√3)cosx +sinx)dx

$${let}\:{f}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\:{cosx}\:+{t}\:{sinx}\right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({t}\right)\:{then}\:{find}\:\:{a}\:{simple}\:{form}\:{of}\:{f}\left({t}\right) \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cosx}\:+\mathrm{2}\:{sinx}\right){dx} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\sqrt{\mathrm{3}}{cosx}\:+{sinx}\right){dx} \\ $$

Question Number 40043    Answers: 1   Comments: 0

find the value of ∫_(−1) ^(+∞) (√(x+1))e^(−x) dx

$${find}\:\:{the}\:{value}\:{of}\:\:\int_{−\mathrm{1}} ^{+\infty} \:\:\sqrt{{x}+\mathrm{1}}{e}^{−{x}} \:{dx} \\ $$$$ \\ $$$$ \\ $$

Question Number 40042    Answers: 0   Comments: 0

1) find the roots of p(x)=(1+ix +x^2 )^n −(1−ix+x^2 )^n with n integr natural 2) factorize p(x) inside C(x) 3) give p(x) at form Σ a_p x^p

$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:\: \\ $$$${p}\left({x}\right)=\left(\mathrm{1}+{ix}\:+{x}^{\mathrm{2}} \right)^{{n}} −\left(\mathrm{1}−{ix}+{x}^{\mathrm{2}} \right)^{{n}} \:{with}\:{n}\:{integr} \\ $$$${natural} \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{p}\left({x}\right)\:{inside}\:\:{C}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{give}\:{p}\left({x}\right)\:{at}\:{form}\:\:\Sigma\:{a}_{{p}} {x}^{{p}} \\ $$

Question Number 40040    Answers: 0   Comments: 1

let A_n = ∫_0 ^n e^(−n( x+2−[x])) dx with n integr natural 1) calculate A_n 2) find lim_(n→+∞) A_n 3) study the convergence of Σ_n A_n

$${let}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \:\:{e}^{−{n}\left(\:{x}+\mathrm{2}−\left[{x}\right]\right)} {dx}\:\:{with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{convergence}\:{of}\:\:\:\sum_{{n}} {A}_{{n}} \\ $$

  Pg 1651      Pg 1652      Pg 1653      Pg 1654      Pg 1655      Pg 1656      Pg 1657      Pg 1658      Pg 1659      Pg 1660   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com