Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1656

Question Number 42494    Answers: 1   Comments: 1

In the sequence of numbers 1, 2, 11, 22, 111, 222, ... the sum of the digits in 999th terms is ??

$$\mathrm{In}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{of}\:\mathrm{numbers}\:\:\mathrm{1},\:\mathrm{2},\:\mathrm{11},\:\mathrm{22},\:\mathrm{111},\:\mathrm{222},\:...\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{digits} \\ $$$$\mathrm{in}\:\mathrm{999th}\:\mathrm{terms}\:\mathrm{is}\:?? \\ $$

Question Number 42493    Answers: 0   Comments: 1

calculate lim_(n→+∞) Σ_(1≤i<j≤n) (1/(i^x j^x )) with x>1 for that consider ξ(x) =Σ_(n=1) ^∞ (1/n^x ) 2) calculate lim_(n→+∞) Σ_(1≤i<j≤n) (1/((ij)^2 )) .

$$\:{calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} \:\:\:\:\:\frac{\mathrm{1}}{{i}^{{x}} {j}^{{x}} }\:\:\:{with}\:\:{x}>\mathrm{1}\:\:{for}\:{that}\:{consider} \\ $$$$\xi\left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{{x}} } \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{lim}_{{n}\rightarrow+\infty} \:\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} \:\:\:\:\:\:\frac{\mathrm{1}}{\left({ij}\right)^{\mathrm{2}} }\:. \\ $$

Question Number 42492    Answers: 2   Comments: 0

let x>0 ,y>0,z>0 prove that (x^2 /(yz)) +(y^2 /(xz)) +(z^2 /(xy)) ≥3 .

$${let}\:{x}>\mathrm{0}\:,{y}>\mathrm{0},{z}>\mathrm{0}\:\:\:{prove}\:{that}\:\:\frac{{x}^{\mathrm{2}} }{{yz}}\:+\frac{{y}^{\mathrm{2}} }{{xz}}\:+\frac{{z}^{\mathrm{2}} }{{xy}}\:\geqslant\mathrm{3}\:. \\ $$

Question Number 42490    Answers: 0   Comments: 0

find L(arctanx) .L means laplace transform .

$${find}\:{L}\left({arctanx}\right)\:\:.{L}\:{means}\:{laplace}\:{transform}\:. \\ $$

Question Number 42489    Answers: 0   Comments: 1

calculate L (sinxe^(−ax) ) with a>0 L means laplace transform .

$${calculate}\:{L}\:\left({sinxe}^{−{ax}} \right)\:\:\:{with}\:{a}>\mathrm{0}\:\:{L}\:{means}\:{laplace}\:{transform}\:. \\ $$

Question Number 42488    Answers: 1   Comments: 1

find ∫ (1+(1/t^2 ))arctan(t−(1/t))dt .

$${find}\:\:\int\:\:\:\left(\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right){arctan}\left({t}−\frac{\mathrm{1}}{{t}}\right){dt}\:. \\ $$

Question Number 42487    Answers: 0   Comments: 3

let f(x) = ∫_0 ^1 (dt/(x +ch(t))) 1) find a explicite form of f(x) 2) calculate ∫_0 ^1 (dt/((x+ch(t))^2 )) 3) find the value of ∫_0 ^1 (dt/(1+ch(t))) and ∫_0 ^1 (dt/(2+ch(t))) 4) find the value of ∫_0 ^1 (dt/((1+cht)^2 )) and ∫_0 ^1 (dt/((2+cht)^2 ))

$${let}\:\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\:\frac{{dt}}{{x}\:+{ch}\left({t}\right)} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicite}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:\:{calculate}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\left({x}+{ch}\left({t}\right)\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{dt}}{\mathrm{1}+{ch}\left({t}\right)}\:{and}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\mathrm{2}+{ch}\left({t}\right)} \\ $$$$\left.\mathrm{4}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{cht}\right)^{\mathrm{2}} }\:\:{and}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dt}}{\left(\mathrm{2}+{cht}\right)^{\mathrm{2}} } \\ $$

Question Number 42479    Answers: 1   Comments: 0

two digit number is seven times the sum of its digits.if 27 is substracted from the number its digits get interchanged. find the number

$$\boldsymbol{\mathrm{two}}\:\boldsymbol{\mathrm{digit}}\:\boldsymbol{\mathrm{number}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{seven}}\:\boldsymbol{\mathrm{times}}\: \\ $$$$\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{its}}\:\boldsymbol{\mathrm{digits}}.\boldsymbol{\mathrm{if}}\:\mathrm{27}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{substracted}}\: \\ $$$$\boldsymbol{\mathrm{from}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{number}}\:\boldsymbol{\mathrm{its}}\:\boldsymbol{\mathrm{digits}}\:\boldsymbol{\mathrm{get}}\:\boldsymbol{\mathrm{interchanged}}. \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{number}} \\ $$$$ \\ $$

Question Number 42481    Answers: 0   Comments: 0

find f(x)= ∫_0 ^(π/4) ln(1+xtant)dt .

$${find}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+{xtant}\right){dt}\:. \\ $$

Question Number 42482    Answers: 0   Comments: 3

let f(x)=e^(−2x) arctan(x) 1) calculate f^((n)) (x) 2) calculate f^((n)) (0) 3) developp f at integr serie .

$${let}\:{f}\left({x}\right)={e}^{−\mathrm{2}{x}} \:{arctan}\left({x}\right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$

Question Number 42475    Answers: 0   Comments: 1

A signpost 4.5cm high is 30cm away⊛ from Mrs Rahup.What is the height of the image formed in her retina?(Take the eye lens-retina distance as 1.5cm).

$${A}\:{signpost}\:\mathrm{4}.\mathrm{5}{cm}\:{high}\:{is}\:\mathrm{30}{cm}\:{away}\circledast \\ $$$${from}\:{Mrs}\:{Rahup}.{What}\:{is}\:{the} \\ $$$${height}\:{of}\:{the}\:{image}\:{formed}\:{in}\:{her} \\ $$$${retina}?\left({Take}\:{the}\:{eye}\:{lens}-{retina}\right. \\ $$$$\left.{distance}\:{as}\:\mathrm{1}.\mathrm{5}{cm}\right). \\ $$

Question Number 42474    Answers: 0   Comments: 0

Question Number 42473    Answers: 0   Comments: 0

Question Number 42472    Answers: 0   Comments: 0

Question Number 42471    Answers: 0   Comments: 0

Question Number 42470    Answers: 0   Comments: 0

Question Number 42469    Answers: 0   Comments: 0

Question Number 42468    Answers: 0   Comments: 0

Question Number 42463    Answers: 1   Comments: 1

let y =(√(x+(√(x+(√(x+2)))))) calculate (dy/dx)

$${let}\:{y}\:\:=\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\mathrm{2}}}} \\ $$$${calculate}\:\:\frac{{dy}}{{dx}} \\ $$

Question Number 42458    Answers: 0   Comments: 0

a boy is in front of a wall.The distance between boy and wall is 12ft.the boy is moving towards the wall in such a way that half the distance between the wall and him is crossed in one minutes.So find the time the boy reach to the wall

$${a}\:{boy}\:{is}\:{in}\:{front}\:{of}\:{a}\:{wall}.{The}\:{distance}\:{between} \\ $$$${boy}\:{and}\:{wall}\:{is}\:\mathrm{12}{ft}.{the}\:{boy}\:{is}\:{moving}\:{towards} \\ $$$${the}\:{wall}\:{in}\:{such}\:{a}\:{way}\:{that}\:\boldsymbol{{half}}\:\boldsymbol{{the}}\:\boldsymbol{{distance}} \\ $$$$\boldsymbol{{between}}\:\boldsymbol{{the}}\:\boldsymbol{{wall}}\:\boldsymbol{{and}}\:\boldsymbol{{him}}\:\boldsymbol{{is}}\:\boldsymbol{{crossed}}\:\boldsymbol{{in}}\:\boldsymbol{{one}} \\ $$$$\boldsymbol{{minutes}}.\boldsymbol{{S}}{o}\:{find}\:{the}\:{time}\:{the}\:{boy}\:{reach}\:{to}\:{the}\:{wall} \\ $$

Question Number 42448    Answers: 3   Comments: 0

Question Number 42446    Answers: 2   Comments: 1

Question Number 42445    Answers: 0   Comments: 0

find A_n = ∫_0 ^(π/4) tan^n t dt with n integer natural .

$${find}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:{tan}^{{n}} {t}\:{dt}\:\:\:{with}\:{n}\:{integer}\:{natural}\:. \\ $$

Question Number 42435    Answers: 1   Comments: 1

find ∫_0 ^1 (dx/((√x) +(√(1−x))))

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{\sqrt{{x}}\:+\sqrt{\mathrm{1}−{x}}} \\ $$

Question Number 42430    Answers: 1   Comments: 2

find ∫ (dx/(3+tan^2 x))

$${find}\:\int\:\:\:\:\:\:\:\frac{{dx}}{\mathrm{3}+{tan}^{\mathrm{2}} {x}} \\ $$

Question Number 42422    Answers: 1   Comments: 2

  Pg 1651      Pg 1652      Pg 1653      Pg 1654      Pg 1655      Pg 1656      Pg 1657      Pg 1658      Pg 1659      Pg 1660   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com