Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1656

Question Number 43545    Answers: 1   Comments: 0

prove that ∫ _0 ^1 ((x^2 +6)/((x^2 +4)(x^2 +9)))=(Π/(20))

$${prove}\:{that}\:\int\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\:}}\:\frac{{x}^{\mathrm{2}} +\mathrm{6}}{\left({x}^{\mathrm{2}} +\mathrm{4}\right)\left({x}^{\mathrm{2}} +\mathrm{9}\right)}=\frac{\Pi}{\mathrm{20}} \\ $$

Question Number 43544    Answers: 1   Comments: 0

Question Number 43543    Answers: 1   Comments: 0

prove that (√(2+(√(2+(√(2+2cos 8θ)))))) 2cos θ

$${prove}\:{that}\:\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\mathrm{2cos}\:\mathrm{8}\theta}}} \\ $$$$\mathrm{2cos}\:\theta \\ $$

Question Number 43540    Answers: 2   Comments: 0

prove that 111 divide 10^(6n+2) +10^(3n+1) +1

$${prove}\:{that}\:\mathrm{111}\:{divide}\:\mathrm{10}^{\mathrm{6}{n}+\mathrm{2}} \:+\mathrm{10}^{\mathrm{3}{n}+\mathrm{1}} \:+\mathrm{1} \\ $$

Question Number 43539    Answers: 0   Comments: 1

calculate ∫∫_(0≤x≤1 ,0≤y≤1) (x+2y)e^(2x−y) dxdy

$${calculate}\:\int\int_{\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:,\mathrm{0}\leqslant{y}\leqslant\mathrm{1}} \:\:\left({x}+\mathrm{2}{y}\right){e}^{\mathrm{2}{x}−{y}} {dxdy} \\ $$

Question Number 43538    Answers: 0   Comments: 1

calculate ∫∫_((x^2 /a^2 ) +(y^2 /b^2 ) ≤1) (x^2 −y^2 )dxdy whit a>0 and b>0 .

$${calculate}\:\int\int_{\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:\leqslant\mathrm{1}} \left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){dxdy}\:{whit} \\ $$$${a}>\mathrm{0}\:{and}\:{b}>\mathrm{0}\:. \\ $$

Question Number 43541    Answers: 1   Comments: 0

let u_0 =u_1 =1 and u_(n+1) =u_n +u_(n−1) 2) find u_n 3)let x_0 the positif roots of x^2 =x+1 4) prove that ∀n≥2 x_0 ^(n−2) ≤u_n ≤x_0 ^(n−1) .

$${let}\:{u}_{\mathrm{0}} ={u}_{\mathrm{1}} =\mathrm{1}\:{and}\:{u}_{{n}+\mathrm{1}} ={u}_{{n}} \:+{u}_{{n}−\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{u}_{{n}} \\ $$$$\left.\mathrm{3}\right){let}\:{x}_{\mathrm{0}} \:\:{the}\:{positif}\:{roots}\:{of}\:{x}^{\mathrm{2}} ={x}+\mathrm{1} \\ $$$$\left.\mathrm{4}\right)\:{prove}\:{that}\:\forall{n}\geqslant\mathrm{2}\:\:{x}_{\mathrm{0}} ^{{n}−\mathrm{2}} \leqslant{u}_{{n}} \leqslant{x}_{\mathrm{0}} ^{{n}−\mathrm{1}} \:. \\ $$

Question Number 43585    Answers: 2   Comments: 2

Question Number 43531    Answers: 1   Comments: 1

the circumference of a circular track is 9 km. A cyclist rides round it a number of times and stops after covering a distance of 302 km. How far is the cyclist from the starting point? [take Π=((22)/7)]

$$\mathrm{the}\:\mathrm{circumference}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circular}\:\mathrm{track}\:\mathrm{is}\:\mathrm{9}\:\mathrm{km}.\:\mathrm{A}\:\mathrm{cyclist} \\ $$$$\mathrm{rides}\:\mathrm{round}\:\mathrm{it}\:\mathrm{a}\:\mathrm{number}\:\mathrm{of}\:\mathrm{times}\:\mathrm{and}\:\mathrm{stops}\:\mathrm{after} \\ $$$$\mathrm{covering}\:\mathrm{a}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{302}\:\mathrm{km}.\:\mathrm{How}\:\mathrm{far}\:\mathrm{is}\:\mathrm{the}\:\mathrm{cyclist} \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{starting}\:\mathrm{point}?\:\left[\mathrm{take}\:\Pi=\frac{\mathrm{22}}{\mathrm{7}}\right] \\ $$

Question Number 43517    Answers: 0   Comments: 1

Question Number 43514    Answers: 0   Comments: 0

Question Number 43589    Answers: 1   Comments: 3

Question Number 43587    Answers: 1   Comments: 0

a and b are the digit in a four digit number 12ab.if 12ab is divisble by 5 and 9 .find the sum of all possible value of a.

$${a}\:{and}\:{b}\:\:{are}\:{the}\:{digit}\:{in}\:{a}\:{four}\:{digit} \\ $$$${number}\:\mathrm{12}{ab}.{if}\:\mathrm{12}{ab}\:{is}\:{divisble}\:{by}\: \\ $$$$\mathrm{5}\:{and}\:\mathrm{9}\:.{find}\:{the}\:{sum}\:{of}\:{all}\:{possible} \\ $$$${value}\:{of}\:\:{a}. \\ $$

Question Number 43496    Answers: 1   Comments: 4

(√(a−(√(a+x)))) + (√(a+(√(a−x)))) =2x Solve for “ x ” in terms of “ a ”

$$\sqrt{\mathrm{a}−\sqrt{\mathrm{a}+\mathrm{x}}}\:\:+\:\:\sqrt{\mathrm{a}+\sqrt{\mathrm{a}−\mathrm{x}}}\:\:=\mathrm{2x}\: \\ $$$$\mathrm{Solve}\:\mathrm{for}\:``\:\mathrm{x}\:''\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\:``\:\:\mathrm{a}\:\:'' \\ $$$$ \\ $$

Question Number 43490    Answers: 1   Comments: 2

evaluate ∫(√(tan𝛉 dθ))

$$\boldsymbol{\mathrm{evaluate}} \\ $$$$\int\sqrt{\boldsymbol{\mathrm{tan}\theta}\:\boldsymbol{\mathrm{d}}\theta} \\ $$

Question Number 43489    Answers: 1   Comments: 0

if y=cos(logx) +3sin(logx) prove that x^2 (d^2 x/dx^2 )+x(dy/dx)+y=0

$${if}\:{y}={cos}\left({logx}\right)\:+\mathrm{3}{sin}\left({logx}\right)\:{prove}\:{that} \\ $$$${x}^{\mathrm{2}} \:\frac{{d}^{\mathrm{2}} {x}}{{dx}^{\mathrm{2}} }+{x}\frac{{dy}}{{dx}}+{y}=\mathrm{0} \\ $$

Question Number 43488    Answers: 1   Comments: 0

if the root of x^3 +px_ ^2 +qx+30=0 are in the ratio 2:3:5find the value of p and q

$${if}\:{the}\:{root}\:{of}\:\:{x}^{\mathrm{3}} +{px}_{} ^{\mathrm{2}} +{qx}+\mathrm{30}=\mathrm{0}\:{are} \\ $$$${in}\:{the}\:{ratio}\:\mathrm{2}:\mathrm{3}:\mathrm{5}{find}\:{the}\:{value}\:{of}\:{p}\:{and}\:{q} \\ $$

Question Number 43486    Answers: 3   Comments: 1

Question Number 43481    Answers: 1   Comments: 0

(((1+2i)^3 )/((3+i)))=

$$\frac{\left(\mathrm{1}+\mathrm{2}{i}\right)^{\mathrm{3}} }{\left(\mathrm{3}+{i}\right)}= \\ $$

Question Number 43471    Answers: 1   Comments: 0

Question Number 43470    Answers: 0   Comments: 0

Please what topic is all the question that has the summation sign. Σ. How can i study the summation by using it to solve some continuous equation.

$$\mathrm{Please}\:\mathrm{what}\:\mathrm{topic}\:\mathrm{is}\:\mathrm{all}\:\mathrm{the}\:\mathrm{question}\:\mathrm{that}\:\mathrm{has}\:\mathrm{the}\:\mathrm{summation}\:\mathrm{sign}. \\ $$$$\Sigma.\:\:\:\:\mathrm{How}\:\mathrm{can}\:\mathrm{i}\:\mathrm{study}\:\mathrm{the}\:\mathrm{summation}\:\mathrm{by}\:\mathrm{using}\:\mathrm{it}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{some}\:\mathrm{continuous} \\ $$$$\mathrm{equation}. \\ $$

Question Number 43467    Answers: 2   Comments: 0

prove that tanθ+2tan2θ+4tan 4θ +8cot8θ=cotθ

$${prove}\:{th}\mathrm{at}\:\mathrm{tan}\theta+\mathrm{2}{tan}\mathrm{2}\theta+\mathrm{4}{tan}\:\:\:\mathrm{4}\theta \\ $$$$+\mathrm{8cot8}\theta={cot}\theta \\ $$

Question Number 43465    Answers: 2   Comments: 1

Question Number 43463    Answers: 0   Comments: 1

Question Number 43461    Answers: 0   Comments: 1

found something (others have found before) which I thought might be of interest, especially for Sir Tanmay Chaudhury: take any polynome of degree 4 with 2 real inflection points y=ax^4 +bx^3 +cx^2 +dx+e y′′=12ax^2 +6bx+2c=0 has got 2 real solutions x_1 and x_2 the line connecting the inflection points intersects the curve in 2 more points P and Q, their x−values are p and q let p<x_1 <x_2 <q ⇒ ((x_2 −x_1 )/(x_1 −p))=((x_2 −x_1 )/(q−x_2 ))=(1/2)+((√5)/2) which is the Golden Ratio

$$\mathrm{found}\:\mathrm{something}\:\left(\mathrm{others}\:\mathrm{have}\:\mathrm{found}\:\mathrm{before}\right) \\ $$$$\mathrm{which}\:\mathrm{I}\:\mathrm{thought}\:\mathrm{might}\:\mathrm{be}\:\mathrm{of}\:\mathrm{interest}, \\ $$$$\mathrm{especially}\:\mathrm{for}\:\mathrm{Sir}\:\mathrm{Tanmay}\:\mathrm{Chaudhury}: \\ $$$$\mathrm{take}\:\mathrm{any}\:\mathrm{polynome}\:\mathrm{of}\:\mathrm{degree}\:\mathrm{4}\:\mathrm{with}\:\mathrm{2}\:\mathrm{real} \\ $$$$\mathrm{inflection}\:\mathrm{points} \\ $$$${y}={ax}^{\mathrm{4}} +{bx}^{\mathrm{3}} +{cx}^{\mathrm{2}} +{dx}+{e} \\ $$$${y}''=\mathrm{12}{ax}^{\mathrm{2}} +\mathrm{6}{bx}+\mathrm{2}{c}=\mathrm{0}\:\mathrm{has}\:\mathrm{got}\:\mathrm{2}\:\mathrm{real}\:\mathrm{solutions} \\ $$$${x}_{\mathrm{1}} \:\mathrm{and}\:{x}_{\mathrm{2}} \\ $$$$\mathrm{the}\:\mathrm{line}\:\mathrm{connecting}\:\mathrm{the}\:\mathrm{inflection}\:\mathrm{points} \\ $$$$\mathrm{intersects}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{in}\:\mathrm{2}\:\mathrm{more}\:\mathrm{points} \\ $$$${P}\:\mathrm{and}\:{Q},\:\mathrm{their}\:{x}−\mathrm{values}\:\mathrm{are}\:{p}\:\mathrm{and}\:{q} \\ $$$$\mathrm{let}\:{p}<{x}_{\mathrm{1}} <{x}_{\mathrm{2}} <{q} \\ $$$$\Rightarrow\:\frac{{x}_{\mathrm{2}} −{x}_{\mathrm{1}} }{{x}_{\mathrm{1}} −{p}}=\frac{{x}_{\mathrm{2}} −{x}_{\mathrm{1}} }{{q}−{x}_{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\:\mathrm{which}\:\mathrm{is}\:\mathrm{the}\:\mathrm{Golden}\:\mathrm{Ratio} \\ $$

Question Number 43454    Answers: 0   Comments: 0

qn: There is a group of 50 people who are patriotic out of which 20 believes in non violence. Two persons are selected at rondom out of them. write the probability distribution for the selected persons who are non violent. also find the mean of the distribution. explain the importance of non violence in patriotism.

$$\mathrm{qn}:\:\mathrm{There}\:\mathrm{is}\:\mathrm{a}\:\mathrm{group}\:\mathrm{of}\:\mathrm{50}\:\mathrm{people} \\ $$$$\mathrm{who}\:\mathrm{are}\:\mathrm{patriotic}\:\mathrm{out}\:\mathrm{of}\:\mathrm{which}\:\mathrm{20} \\ $$$$\mathrm{believes}\:\mathrm{in}\:\mathrm{non}\:\mathrm{violence}.\:\mathrm{Two}\:\mathrm{persons} \\ $$$$\mathrm{are}\:\mathrm{selected}\:\mathrm{at}\:\mathrm{rondom}\:\mathrm{out}\:\mathrm{of}\:\mathrm{them}. \\ $$$$\mathrm{write}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{distribution}\:\mathrm{for}\:\mathrm{the} \\ $$$$\mathrm{selected}\:\mathrm{persons}\:\mathrm{who}\:\mathrm{are}\:\mathrm{non}\:\mathrm{violent}. \\ $$$$\mathrm{also}\:\mathrm{find}\:\mathrm{the}\:\mathrm{mean}\:\mathrm{of}\:\mathrm{the}\:\mathrm{distribution}. \\ $$$$\mathrm{explain}\:\mathrm{the}\:\mathrm{importance}\:\mathrm{of}\:\mathrm{non}\:\mathrm{violence}\:\mathrm{in}\:\mathrm{patriotism}. \\ $$$$ \\ $$$$ \\ $$

  Pg 1651      Pg 1652      Pg 1653      Pg 1654      Pg 1655      Pg 1656      Pg 1657      Pg 1658      Pg 1659      Pg 1660   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com