Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1636

Question Number 44712    Answers: 3   Comments: 0

Question Number 44708    Answers: 1   Comments: 0

Let A,B be two n×n matrices such that A+B=AB then prove : AB=BA ?

$${Let}\:{A},{B}\:{be}\:{two}\:{n}×{n}\:{matrices}\:{such} \\ $$$${that}\:{A}+{B}={AB}\:{then}\:{prove}\:: \\ $$$${AB}={BA}\:? \\ $$

Question Number 44702    Answers: 0   Comments: 0

Question Number 44697    Answers: 0   Comments: 0

prove that:− ∫_0 ^∞ (t^(a−1) /(1+t))dt = (𝛑/(sin(𝛑a)))

$$\boldsymbol{{prove}}\:\boldsymbol{{that}}:− \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{{t}}^{\boldsymbol{{a}}−\mathrm{1}} }{\mathrm{1}+\boldsymbol{{t}}}\boldsymbol{{dt}}\:=\:\frac{\boldsymbol{\pi}}{\boldsymbol{{sin}}\left(\boldsymbol{\pi{a}}\right)} \\ $$

Question Number 44704    Answers: 2   Comments: 0

Find the general solution of : 311x − 112y = 73

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\::\:\:\:\:\:\:\:\:\:\:\:\mathrm{311x}\:−\:\mathrm{112y}\:=\:\mathrm{73} \\ $$

Question Number 44706    Answers: 0   Comments: 4

let f_α (x) = ((cos(αx))/(1+x^2 )) 1) calculate f^((n)) (x) and f^((n)) (0) 2) developp f at integr serie 3) give ∫_0 ^x f_α (t) dt at form of serie 4) developp ∫_0 ^∞ f_α (t)dt at integr serie .

$${let}\:{f}_{\alpha} \left({x}\right)\:=\:\frac{{cos}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{3}\right)\:{give}\:\int_{\mathrm{0}} ^{{x}} \:{f}_{\alpha} \left({t}\right)\:{dt}\:\:{at}\:{form}\:{of}\:{serie}\: \\ $$$$\left.\mathrm{4}\right)\:{developp}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:{f}_{\alpha} \left({t}\right){dt}\:\:{at}\:\:{integr}\:{serie}\:. \\ $$

Question Number 44696    Answers: 1   Comments: 1

∫(1/(1+x^4 ))dx = ?

$$\int\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{4}} }\boldsymbol{\mathrm{dx}}\:=\:? \\ $$

Question Number 44695    Answers: 0   Comments: 2

∫(e^(√(t−1)) /t)dt = ?

$$\int\frac{\boldsymbol{\mathrm{e}}^{\sqrt{\boldsymbol{\mathrm{t}}−\mathrm{1}}} }{\boldsymbol{\mathrm{t}}}\boldsymbol{\mathrm{dt}}\:=\:? \\ $$

Question Number 44691    Answers: 1   Comments: 1

Question Number 44676    Answers: 1   Comments: 6

Question Number 44652    Answers: 2   Comments: 4

Prove that lim_(x→0) (((1+ax)^(1/b) −1)/x) = (a/b).

$${Prove}\:{that}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+{ax}\right)^{\frac{\mathrm{1}}{{b}}} −\mathrm{1}}{{x}}\:=\:\frac{{a}}{{b}}. \\ $$

Question Number 44639    Answers: 0   Comments: 1

∫(1/(1+(log x)^2 ))dx=?

$$\int\frac{\mathrm{1}}{\mathrm{1}+\left(\boldsymbol{\mathrm{log}}\:\boldsymbol{\mathrm{x}}\right)^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=? \\ $$$$ \\ $$

Question Number 44636    Answers: 1   Comments: 0

Question Number 44654    Answers: 1   Comments: 4

∫(e^x /(1+x^2 ))dx=?

$$\int\frac{\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} }{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=? \\ $$

Question Number 44623    Answers: 1   Comments: 0

given that sin^(−1) x+sin^(−1) y=c show that (dy/dx)+(√((1−y^2 )/(1−x^2 )))=0

$$\boldsymbol{\mathrm{given}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{sin}}^{−\mathrm{1}} \boldsymbol{{x}}+\boldsymbol{\mathrm{sin}}^{−\mathrm{1}} \boldsymbol{{y}}=\boldsymbol{\mathrm{c}} \\ $$$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\:\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}+\sqrt{\frac{\mathrm{1}−\boldsymbol{{y}}^{\mathrm{2}} }{\mathrm{1}−\boldsymbol{{x}}^{\mathrm{2}} }}=\mathrm{0} \\ $$

Question Number 44622    Answers: 1   Comments: 0

if y=ln[tan((𝛑/4)+(x/2))] show that (dy/dx)=secx

$$\boldsymbol{\mathrm{if}}\:\boldsymbol{{y}}=\boldsymbol{\mathrm{ln}}\left[\boldsymbol{\mathrm{tan}}\left(\frac{\boldsymbol{\pi}}{\mathrm{4}}+\frac{\boldsymbol{{x}}}{\mathrm{2}}\right)\right]\:\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}} \\ $$$$\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}=\boldsymbol{\mathrm{sec}{x}} \\ $$

Question Number 44621    Answers: 2   Comments: 0

Question Number 44613    Answers: 0   Comments: 1

Question Number 44612    Answers: 2   Comments: 0

Prove that One factor of determinant (((a^2 +x),( ab),( ac)),(( ab),(b^2 +x),( cb)),(( ca),( cb),(c^2 +x))) is x^2 .

$${Prove}\:{that}\:\mathrm{One}\:\mathrm{factor}\:\mathrm{of}\begin{vmatrix}{{a}^{\mathrm{2}} +{x}}&{\:\:{ab}}&{\:\:{ac}}\\{\:\:{ab}}&{{b}^{\mathrm{2}} +{x}}&{\:\:{cb}}\\{\:\:{ca}}&{\:\:{cb}}&{{c}^{\mathrm{2}} +{x}}\end{vmatrix}\:\mathrm{is}\:{x}^{\mathrm{2}} . \\ $$

Question Number 44604    Answers: 1   Comments: 1

∫[((log x − 1)/(1+(log x)^2 ))]^2 dx = (x/((log x)^2 +1))+C

$$\int\left[\frac{\boldsymbol{\mathrm{log}}\:\boldsymbol{\mathrm{x}}\:\:−\:\:\mathrm{1}}{\mathrm{1}+\left(\boldsymbol{\mathrm{log}}\:\boldsymbol{\mathrm{x}}\right)^{\mathrm{2}} }\right]^{\mathrm{2}} \boldsymbol{\mathrm{dx}}\:\:=\:\:\frac{\boldsymbol{\mathrm{x}}}{\left(\boldsymbol{\mathrm{log}}\:\boldsymbol{\mathrm{x}}\right)^{\mathrm{2}} +\mathrm{1}}+\boldsymbol{\mathrm{C}} \\ $$

Question Number 44602    Answers: 0   Comments: 0

∫(e^x /(1+x^2 )) dx = ?

$$\int\frac{\boldsymbol{{e}}^{\boldsymbol{\mathrm{x}}} }{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\:\boldsymbol{\mathrm{dx}}\:=\:\:? \\ $$

Question Number 44587    Answers: 1   Comments: 2

calculate ∫_0 ^∞ (dt/(1+t^(2018) ))

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2018}} } \\ $$

Question Number 44584    Answers: 1   Comments: 5

Prove that if a, b, c ∈ Z and a^2 + b^2 = c^2 , then 3 ∣ ab

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}\:\:{a},\:{b},\:{c}\:\in\:\mathbb{Z}\:\:\mathrm{and}\:\:{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:=\:{c}^{\mathrm{2}} ,\:\mathrm{then} \\ $$$$\mathrm{3}\:\mid\:{ab} \\ $$

Question Number 44674    Answers: 0   Comments: 1

solving some integrals we might meet some of the following functions which cannot be solved with elementar knowledge but tables should exist somewhere in the depth of the www... these links might be interesting exponential integral ∫(e^(−x) /x)dx en.wikipedia.org/wiki/Exponential_integral logarithmic integral ∫(dx/(ln x)) en.wikipedia.org/wiki/Logarithmic_integral_function also see en.wikipedia.org/wiki/Polylogarithm trigonometric integrals i.e. ∫((sin x)/x)dx en.wikipedia.org/wiki/Trigonometric_integral

$$\mathrm{solving}\:\mathrm{some}\:\mathrm{integrals}\:\mathrm{we}\:\mathrm{might}\:\mathrm{meet}\:\mathrm{some} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{functions}\:\mathrm{which}\:\mathrm{cannot}\:\mathrm{be} \\ $$$$\mathrm{solved}\:\mathrm{with}\:\mathrm{elementar}\:\mathrm{knowledge}\:\mathrm{but}\:\mathrm{tables} \\ $$$$\mathrm{should}\:\mathrm{exist}\:\mathrm{somewhere}\:\mathrm{in}\:\mathrm{the}\:\mathrm{depth}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{www}... \\ $$$$\mathrm{these}\:\mathrm{links}\:\mathrm{might}\:\mathrm{be}\:\mathrm{interesting} \\ $$$$ \\ $$$$\mathrm{exponential}\:\mathrm{integral} \\ $$$$\int\frac{\mathrm{e}^{−{x}} }{{x}}{dx} \\ $$$$\mathrm{en}.\mathrm{wikipedia}.\mathrm{org}/\mathrm{wiki}/\mathrm{Exponential\_integral} \\ $$$$ \\ $$$$\mathrm{logarithmic}\:\mathrm{integral} \\ $$$$\int\frac{{dx}}{\mathrm{ln}\:{x}} \\ $$$$\mathrm{en}.\mathrm{wikipedia}.\mathrm{org}/\mathrm{wiki}/\mathrm{Logarithmic\_integral\_function} \\ $$$$\mathrm{also}\:\mathrm{see} \\ $$$$\mathrm{en}.\mathrm{wikipedia}.\mathrm{org}/\mathrm{wiki}/\mathrm{Polylogarithm} \\ $$$$ \\ $$$$\mathrm{trigonometric}\:\mathrm{integrals} \\ $$$$\mathrm{i}.\mathrm{e}.\:\int\frac{\mathrm{sin}\:{x}}{{x}}{dx} \\ $$$$\mathrm{en}.\mathrm{wikipedia}.\mathrm{org}/\mathrm{wiki}/\mathrm{Trigonometric\_integral} \\ $$

Question Number 44570    Answers: 1   Comments: 0

Question Number 44573    Answers: 1   Comments: 1

  Pg 1631      Pg 1632      Pg 1633      Pg 1634      Pg 1635      Pg 1636      Pg 1637      Pg 1638      Pg 1639      Pg 1640   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com