Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1636

Question Number 39346    Answers: 0   Comments: 2

Question Number 39342    Answers: 1   Comments: 0

Let f(x) = ∫_(0 ) ^2 ∣x−t∣ dt (x>0) , then minimum value of f(x) is ?

$$\mathrm{Let}\:\mathrm{f}\left({x}\right)\:=\:\int_{\mathrm{0}\:} ^{\mathrm{2}} \:\mid{x}−{t}\mid\:\mathrm{dt}\:\left({x}>\mathrm{0}\right)\:,\:\mathrm{then} \\ $$$$\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{f}\left({x}\right)\:\mathrm{is}\:? \\ $$

Question Number 39341    Answers: 0   Comments: 4

I_1 = ∫_0 ^π ((sin 884x sin 1122x)/(sin x)) dx I_2 = ∫_0 ^1 ((x^(238) (x^(1768) −1))/((x^2 −1))) dx then value of (I_1 /I_2 ) =?

$$\mathrm{I}_{\mathrm{1}} =\:\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{sin}\:\mathrm{884}{x}\:\mathrm{sin}\:\mathrm{1122}{x}}{\mathrm{sin}\:{x}}\:{dx} \\ $$$$\mathrm{I}_{\mathrm{2}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{\mathrm{238}} \left({x}^{\mathrm{1768}} −\mathrm{1}\right)}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)}\:{dx} \\ $$$${then}\:{value}\:{of}\:\frac{\mathrm{I}_{\mathrm{1}} }{\mathrm{I}_{\mathrm{2}} }\:=? \\ $$

Question Number 39338    Answers: 2   Comments: 2

If f(x) = ∫_0 ^4 e^(∣t−x∣) dt (0≤x≤4), maximum value of f(x) is = ?

$$\mathrm{If}\:\mathrm{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{4}} \:\mathrm{e}^{\mid\mathrm{t}−{x}\mid} \:\mathrm{dt}\:\:\:\:\left(\mathrm{0}\leqslant{x}\leqslant\mathrm{4}\right), \\ $$$$\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{f}\left({x}\right)\:\mathrm{is}\:=\:? \\ $$

Question Number 39336    Answers: 0   Comments: 5

Question Number 39337    Answers: 0   Comments: 0

tan^(−1) 2 + tan^(−1) 3=cosec^(−1) x ,then x is equal to (a) 4 (b) (√2) (d) −(√2) (d) none of these

$${tan}^{−\mathrm{1}} \:\mathrm{2}\:+\:{tan}^{−\mathrm{1}} \:\mathrm{3}={cosec}^{−\mathrm{1}} {x}\:\:,{then} \\ $$$${x}\:\:{is}\:\:{equal}\:\:{to} \\ $$$$\:\left({a}\right)\:\:\:\mathrm{4}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({b}\right)\:\:\sqrt{\mathrm{2}}\:\: \\ $$$$\left({d}\right)\:−\sqrt{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({d}\right)\:{none}\:{of}\:{these} \\ $$

Question Number 39332    Answers: 0   Comments: 1

1) simplify S_n (x)=Σ_(k=1) ^n sin^2 (kx) 2)simplify A_n =Σ_(k=1) ^n sin^2 (((kπ)/n))

$$\left.\mathrm{1}\right)\:{simplify}\:{S}_{{n}} \left({x}\right)=\sum_{{k}=\mathrm{1}} ^{{n}} \:{sin}^{\mathrm{2}} \left({kx}\right) \\ $$$$\left.\mathrm{2}\right){simplify}\:\:{A}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:{sin}^{\mathrm{2}} \left(\frac{{k}\pi}{{n}}\right) \\ $$

Question Number 39404    Answers: 1   Comments: 7

Question Number 39312    Answers: 5   Comments: 0

prove that (tan 4a+tan 2a)(1−tan^2 3a tan^2 a)=2tan 3a sec^2 a

$${prove}\:{that} \\ $$$$\left({tan}\:\mathrm{4}{a}+{tan}\:\mathrm{2}{a}\right)\left(\mathrm{1}−{tan}^{\mathrm{2}} \mathrm{3}{a}\:{tan}^{\mathrm{2}} {a}\right)=\mathrm{2}{tan}\:\mathrm{3}{a}\:{sec}^{\mathrm{2}} {a} \\ $$

Question Number 39303    Answers: 1   Comments: 1

Question Number 39300    Answers: 1   Comments: 0

Question Number 39298    Answers: 0   Comments: 0

Question Number 39292    Answers: 0   Comments: 3

let f(x)= arctan(2x) 1) calculate f^((n)) (x) then f^((n)) (0) 2) developp f at integr serie 3) let F(t)= ∫_0 ^t arctan(2x)dx developp F at integr serie 4) give F(1) at form of serie.

$${let}\:{f}\left({x}\right)=\:{arctan}\left(\mathrm{2}{x}\right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{then}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{3}\right)\:{let}\:{F}\left({t}\right)=\:\int_{\mathrm{0}} ^{{t}} \:\:{arctan}\left(\mathrm{2}{x}\right){dx} \\ $$$${developp}\:{F}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{4}\right)\:{give}\:{F}\left(\mathrm{1}\right)\:{at}\:{form}\:{of}\:{serie}. \\ $$

Question Number 39289    Answers: 1   Comments: 0

Find the value of x if the matrix (((3x 5x)),((x 3)) ) (((x 1)),((3 x)) ) has no inverse

$${Find}\:{the}\:{value}\:{of}\:{x}\:{if}\: \\ $$$${the}\:{matrix}\: \\ $$$$ \\ $$$$\begin{pmatrix}{\mathrm{3}{x}\:\:\:\:\:\:\:\:\mathrm{5}{x}}\\{{x}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}}\end{pmatrix}\begin{pmatrix}{{x}\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{3}\:\:\:\:\:\:\:\:\:{x}}\end{pmatrix}\: \\ $$$${has}\:{no}\:{inverse} \\ $$

Question Number 39291    Answers: 0   Comments: 2

let f(x)=(e^(−x^2 ) /(1+x^2 )) developp f at integr serie .

$${let}\:{f}\left({x}\right)=\frac{{e}^{−{x}^{\mathrm{2}} } }{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$

Question Number 39280    Answers: 3   Comments: 1

∫_0 ^(π/2) cos^(10) x.sin 12x dx = ? Given reduction formula : ∫ cos^m x sin nx dx I_(m,n) = −((cos^m x . cosnx)/(m+n)) + (m/(m+n)) I_(m−1,n−1)

$$\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{cos}\:^{\mathrm{10}} {x}.\mathrm{sin}\:\mathrm{12}{x}\:{dx}\:=\:? \\ $$$$\mathrm{Given} \\ $$$$\mathrm{reduction}\:\mathrm{formula}\:: \\ $$$$\int\:\mathrm{cos}^{\mathrm{m}} {x}\:{sin}\:{nx}\:{dx}\: \\ $$$$\:\mathrm{I}_{\mathrm{m},\mathrm{n}} =\:−\frac{\mathrm{cos}\:^{\mathrm{m}} {x}\:.\:{cosnx}}{{m}+{n}}\:+\:\frac{{m}}{{m}+{n}}\:\mathrm{I}_{\mathrm{m}−\mathrm{1},\mathrm{n}−\mathrm{1}} \\ $$

Question Number 40946    Answers: 1   Comments: 0

Each of two long straight wires 4cm apart carry equal electric currents and experience a force of 2×10^(−4) N/m. What is the magnitude of the electric current in each?

$${Each}\:{of}\:{two}\:{long}\:{straight}\:{wires}\:\mathrm{4}{cm} \\ $$$${apart}\:{carry}\:{equal}\:{electric}\:{currents} \\ $$$${and}\:{experience}\:{a}\:{force}\:{of}\:\mathrm{2}×\mathrm{10}^{−\mathrm{4}} {N}/{m}. \\ $$$${What}\:{is}\:{the}\:{magnitude}\:{of}\:{the} \\ $$$${electric}\:{current}\:{in}\:{each}? \\ $$

Question Number 40142    Answers: 1   Comments: 1

calculate ∫_(−(π/6)) ^(π/6) ((1+tan(x))/(1+sin(2x)))dx

$${calculate}\:\:\:\:\int_{−\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{6}}} \:\:\:\frac{\mathrm{1}+{tan}\left({x}\right)}{\mathrm{1}+{sin}\left(\mathrm{2}{x}\right)}{dx} \\ $$$$ \\ $$

Question Number 39272    Answers: 0   Comments: 1

∫_0 ^( 2π) (((acos α−bcos θ)dθ)/([a^2 +b^2 −2abcos (θ−α)]^(3/2) )) = ?

$$\int_{\mathrm{0}} ^{\:\:\mathrm{2}\pi} \frac{\left({a}\mathrm{cos}\:\alpha−{b}\mathrm{cos}\:\theta\right){d}\theta}{\left[{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\mathrm{cos}\:\left(\theta−\alpha\right)\right]^{\mathrm{3}/\mathrm{2}} }\:=\:? \\ $$

Question Number 39267    Answers: 1   Comments: 1

Question Number 39257    Answers: 0   Comments: 0

Question Number 39256    Answers: 0   Comments: 0

Question Number 39255    Answers: 0   Comments: 0

Question Number 39253    Answers: 0   Comments: 2

Question Number 39258    Answers: 0   Comments: 0

Question Number 39237    Answers: 0   Comments: 1

Calculate the triple point for an electrical resistance thermometer, assuming the ratio of resistance at the triple point to that at initial point is 2.0.

$${Calculate}\:{the}\:{triple}\:{point}\:{for}\:{an} \\ $$$${electrical}\:{resistance}\:{thermometer}, \\ $$$${assuming}\:{the}\:{ratio}\:{of}\:{resistance} \\ $$$${at}\:{the}\:{triple}\:{point}\:{to}\:{that}\:{at}\:{initial} \\ $$$${point}\:{is}\:\mathrm{2}.\mathrm{0}. \\ $$

  Pg 1631      Pg 1632      Pg 1633      Pg 1634      Pg 1635      Pg 1636      Pg 1637      Pg 1638      Pg 1639      Pg 1640   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com