Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1636

Question Number 35602    Answers: 2   Comments: 0

Q_1 .p(x) = 3x^3 + 4x^2 +5x − k and (x−1) is a factor of p(x) find the value of k and the remaining two factors. Q_2 . Evaluate Σ_(r=1) ^∞ 3^(2−r) .

$$\mathrm{Q}_{\mathrm{1}} .{p}\left(\mathrm{x}\right)\:=\:\mathrm{3x}^{\mathrm{3}} +\:\mathrm{4x}^{\mathrm{2}} +\mathrm{5x}\:−\:\mathrm{k}\:\mathrm{and}\: \\ $$$$\left(\mathrm{x}−\mathrm{1}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{factor}\:\mathrm{of}\:\mathrm{p}\left(\mathrm{x}\right)\:\mathrm{find}\:\mathrm{the}\: \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{k}\:\mathrm{and}\:\mathrm{the}\:\mathrm{remaining}\: \\ $$$$\mathrm{two}\:\mathrm{factors}. \\ $$$${Q}_{\mathrm{2}} .\:{Evaluate}\:\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{3}^{\mathrm{2}−{r}} . \\ $$

Question Number 35595    Answers: 1   Comments: 0

Find the surface Area of a solid cone of raduis 3cm and slant height 4cm. (take π=3.1)

$${Find}\:{the}\:{surface}\:{Area}\:{of}\:{a}\:{solid} \\ $$$${cone}\:{of}\:{raduis}\:\mathrm{3}{cm}\:{and}\:{slant}\: \\ $$$${height}\:\mathrm{4}{cm}.\:\left({take}\:\pi=\mathrm{3}.\mathrm{1}\right) \\ $$

Question Number 35594    Answers: 1   Comments: 0

Given that 18,24,and k + 14 are three consecutive terms of an arithmetic progression Find a) the common difference b) the value of k c)the first term if the 4^(th) term is 12. d) the sum of the first twelve terms of the progression.

$${Given}\:{that}\:\mathrm{18},\mathrm{24},{and}\:{k}\:+\:\mathrm{14}\:{are}\: \\ $$$${three}\:{consecutive}\:{terms}\:{of}\:{an}\: \\ $$$${arithmetic}\:{progression}\:{Find} \\ $$$$\left.{a}\right)\:{the}\:{common}\:{difference} \\ $$$$\left.{b}\right)\:{the}\:{value}\:{of}\:{k} \\ $$$$\left.{c}\right){the}\:{first}\:{term}\:{if}\:{the}\:\mathrm{4}^{{th}} \:{term}\:{is} \\ $$$$\mathrm{12}. \\ $$$$\left.{d}\right)\:{the}\:{sum}\:{of}\:{the}\:{first}\:{twelve}\:{terms}\:{of} \\ $$$${the}\:{progression}. \\ $$

Question Number 35593    Answers: 0   Comments: 0

let f(a)=∫_0 ^∞ e^(−( t^2 +(a/t^2 ))) dt witha>0 find the value of f(a).

$${let}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left(\:{t}^{\mathrm{2}} \:+\frac{{a}}{{t}^{\mathrm{2}} }\right)} {dt}\:{witha}>\mathrm{0} \\ $$$${find}\:{the}\:{value}\:{of}\:{f}\left({a}\right). \\ $$

Question Number 35590    Answers: 0   Comments: 0

find J = ∫_0 ^1 e^(−ax) ln(1+e^(−bx) )dx with a>0 and b>0 .

$${find}\:\:{J}\:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{−{ax}} {ln}\left(\mathrm{1}+{e}^{−{bx}} \right){dx}\:{with}\:{a}>\mathrm{0}\:{and} \\ $$$${b}>\mathrm{0}\:. \\ $$

Question Number 35589    Answers: 0   Comments: 1

let I = ∫_0 ^∞ e^(−tx) ∣sint∣dt with x>0 find the value of I .

$${let}\:\:\:{I}\:\:=\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{tx}} \:\mid{sint}\mid{dt}\:\:{with}\:{x}>\mathrm{0} \\ $$$${find}\:{the}\:{value}\:{of}\:{I}\:. \\ $$

Question Number 35588    Answers: 1   Comments: 1

calculate ∫_0 ^(π/3) ((sinx cos(cosx))/(1+2sin(cosx)))dx

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\:\frac{{sinx}\:{cos}\left({cosx}\right)}{\mathrm{1}+\mathrm{2}{sin}\left({cosx}\right)}{dx} \\ $$

Question Number 35587    Answers: 0   Comments: 0

let f(t) =∫_0 ^1 (e^(−t(1+x^2 )) /(1+x^2 ))dx with t≥0 find a simple form of f(t) .

$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{e}^{−{t}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:{with}\:{t}\geqslant\mathrm{0} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({t}\right)\:. \\ $$

Question Number 35586    Answers: 0   Comments: 0

find the value of f(α) = ∫_0 ^∞ ((arctan(αx))/(1+x^2 ))dx with α from R .

$${find}\:{the}\:{value}\:{of}\: \\ $$$${f}\left(\alpha\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{arctan}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:{with}\:\alpha\:{from}\:{R}\:. \\ $$

Question Number 35585    Answers: 0   Comments: 0

let f(x)= ∫_0 ^x sin(cost)dt developp f at integr serie

$${let}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:{sin}\left({cost}\right){dt} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$

Question Number 35584    Answers: 0   Comments: 0

let f(t) = ∫_0 ^∞ ((arctan(e^(−tx^2 ) ))/x^2 ) dx with t>0 1) study the existence of f(t) 2) calculate f^′ (t)

$${let}\:\:{f}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{arctan}\left({e}^{−{tx}^{\mathrm{2}} } \right)}{{x}^{\mathrm{2}} }\:{dx}\:{with}\:{t}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{study}\:\:{the}\:{existence}\:{of}\:\:{f}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({t}\right) \\ $$

Question Number 35583    Answers: 0   Comments: 0

find ∫_0 ^(π/6) (√(x−sinx)) dx

$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} \:\sqrt{{x}−{sinx}}\:{dx} \\ $$

Question Number 35582    Answers: 0   Comments: 0

let g(x)= (1/(2+sinx)) , 2π periodic odd developp f at fourier serie .

$${let}\:{g}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}+{sinx}}\:\:\:\:,\:\mathrm{2}\pi\:{periodic}\:{odd} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\:. \\ $$

Question Number 35581    Answers: 0   Comments: 0

let f(x) = (3/(1+2cosx)) , 2π periodic even developp f at fourier serie.

$${let}\:{f}\left({x}\right)\:=\:\:\frac{\mathrm{3}}{\mathrm{1}+\mathrm{2}{cosx}}\:\:,\:\mathrm{2}\pi\:{periodic}\:{even} \\ $$$${developp}\:{f}\:\:{at}\:{fourier}\:{serie}. \\ $$$$ \\ $$

Question Number 35580    Answers: 0   Comments: 0

if (1/(1+cosx)) = (a_0 /2) +Σ_(n=1) ^∞ a_n cos(nx) calculate a_0 and a_n

$${if}\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{cosx}}\:=\:\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:{a}_{{n}} \:{cos}\left({nx}\right)\:\:{calculate}\:{a}_{\mathrm{0}} \\ $$$${and}\:{a}_{{n}} \\ $$

Question Number 35579    Answers: 0   Comments: 0

(u_n ) is a arithmetic sequence with u_0 =1 and u_5 =11 1) find the value of S_n = Σ_(k=0) ^n (1/u_k ^2 ) and lim_(n→+∞) S_n 2) find the value of W_n = Σ_(k=1) ^n (1/(u_(k−1) . u_(k+1) )) and lim_(n→+∞) W_n .

$$\left({u}_{{n}} \right)\:{is}\:{a}\:{arithmetic}\:{sequence}\:{with}\:{u}_{\mathrm{0}} =\mathrm{1}\:{and} \\ $$$${u}_{\mathrm{5}} =\mathrm{11}\:\:\:\:\: \\ $$$$\left.\mathrm{1}\right)\:\:{find}\:{the}\:{value}\:{of}\:\:\:{S}_{{n}} \:\:=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\:\frac{\mathrm{1}}{{u}_{{k}} ^{\mathrm{2}} } \\ $$$${and}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\:{W}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{{u}_{{k}−\mathrm{1}} .\:{u}_{{k}+\mathrm{1}} } \\ $$$${and}\:{lim}_{{n}\rightarrow+\infty} \:{W}_{{n}} \:. \\ $$

Question Number 35567    Answers: 0   Comments: 2

Question Number 35562    Answers: 0   Comments: 2

Is there a backwards “⇒”?

$$\mathrm{Is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{backwards}\:``\Rightarrow''? \\ $$

Question Number 35553    Answers: 0   Comments: 0

Question Number 35551    Answers: 0   Comments: 1

Question Number 35550    Answers: 0   Comments: 0

Question Number 35549    Answers: 0   Comments: 1

Question Number 35548    Answers: 0   Comments: 0

Question Number 35547    Answers: 0   Comments: 0

Question Number 35546    Answers: 0   Comments: 0

Question Number 35545    Answers: 0   Comments: 0

  Pg 1631      Pg 1632      Pg 1633      Pg 1634      Pg 1635      Pg 1636      Pg 1637      Pg 1638      Pg 1639      Pg 1640   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com