let give x∈]0,2π[ and a ∈R,b∈ R
prove that ((π−x)/2) = arctan(((sinx)/(1−cosx)))
2) prove that ∣arctan(a)−arctan(b)∣≤∣a−b∣
3)letθ ∈]0,(π/2)[ , x ∈[θ,2π−θ] , r∈[0,1[ prove that
∣ϕ(x,r) −((π−x)/2)∣≤ ((1−r)/((1−cosθ)^2 ))
let r ∈[0,1[ and x∈ R and
ϕ(x,r) = arctan( ((rsinx)/(1−r cosx)))
1) prove that (∂ϕ/∂x)(x,r) =Σ_(n=1) ^∞ r^n cos(nx)
2)prove that ϕ(x,r) = Σ_(n=1) ^∞ r^n ((sin(nx))/n)
let r∈[0,1[ and x from R
F(x,r) = (1/(2π)) ∫_0 ^(2π) (((1−r^2 )f(t))/(1−2r cos(t−x) +r^2 ))dt with
f ∈ C^0 (R) 2π periodic and ∣∣f∣∣=sup_(t∈R) ∣f(t)∣
prove that F(x,r)= (a_0 /2) + Σ_(n=1) ^∞ r^n (a_n cos(nx) +b_n sin(nx))
with a_n = (1/π) ∫_0 ^(2π) f(t) cos(nt)dt and
b_n = (1/π) ∫_0 ^(2π) f(t)sin(nt)dt