Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1635

Question Number 45681    Answers: 1   Comments: 0

Question Number 45673    Answers: 1   Comments: 1

Question Number 45670    Answers: 1   Comments: 1

∫cos^(−1) (sinx)dx=?

$$\int{cos}^{−\mathrm{1}} \left({sinx}\right){dx}=? \\ $$

Question Number 45669    Answers: 2   Comments: 0

∫tan^(−1) (√((1−sinx)/(1+sinx))) dx=?

$$\int{tan}^{−\mathrm{1}} \sqrt{\frac{\mathrm{1}−{sinx}}{\mathrm{1}+{sinx}}}\:{dx}=? \\ $$

Question Number 45654    Answers: 0   Comments: 1

Question Number 45649    Answers: 1   Comments: 1

Let consider A(3,5), B(6,4) and C(3,−2), d : x−5y+7=0 Consider a dot D such as ABCD is a trapezium and (AD) and (BC) are parallel lines. Q1) Give the equation of the line which contains the point D. Q2) Considering that the trapezium should be convex, are all the points D of the lines correct for the Trapezium ? Which ones are ? Give a proof. I have some difficulties to anzwer the question n°2, could someone please, help me. Thank you. H.T.

$$\mathrm{Let}\:\mathrm{consider}\:\mathrm{A}\left(\mathrm{3},\mathrm{5}\right),\:\mathrm{B}\left(\mathrm{6},\mathrm{4}\right)\:\mathrm{and}\:\mathrm{C}\left(\mathrm{3},−\mathrm{2}\right), \\ $$$$\mathrm{d}\::\:{x}−\mathrm{5}{y}+\mathrm{7}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Consider}\:\mathrm{a}\:\mathrm{dot}\:\mathrm{D}\:\mathrm{such}\:\mathrm{as}\:\mathrm{ABCD}\:\mathrm{is}\:\mathrm{a}\:\mathrm{trapezium} \\ $$$$\mathrm{and}\:\left(\mathrm{AD}\right)\:\mathrm{and}\:\left(\mathrm{BC}\right)\:\mathrm{are}\:\mathrm{parallel}\:\mathrm{lines}. \\ $$$$ \\ $$$$\left.\mathrm{Q1}\right)\:\:\:\mathrm{Give}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{line}\:\mathrm{which} \\ $$$$\mathrm{contains}\:\mathrm{the}\:\mathrm{point}\:\mathrm{D}. \\ $$$$ \\ $$$$\left.\mathrm{Q2}\right)\:\:\:\mathrm{Considering}\:\mathrm{that}\:\mathrm{the}\:\mathrm{trapezium} \\ $$$$\mathrm{should}\:\mathrm{be}\:\mathrm{convex},\:\mathrm{are}\:\mathrm{all}\:\mathrm{the}\:\mathrm{points}\:\mathrm{D}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{lines}\:\mathrm{correct}\:\mathrm{for}\:\mathrm{the}\:\mathrm{Trapezium}\:? \\ $$$$\mathrm{Which}\:\mathrm{ones}\:\mathrm{are}\:? \\ $$$$\mathrm{Give}\:\mathrm{a}\:\mathrm{proof}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{have}\:\mathrm{some}\:\mathrm{difficulties}\:\mathrm{to}\:\mathrm{anzwer}\:\mathrm{the} \\ $$$$\mathrm{question}\:\mathrm{n}°\mathrm{2},\:\mathrm{could}\:\mathrm{someone}\:\mathrm{please}, \\ $$$$\mathrm{help}\:\mathrm{me}. \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you}. \\ $$$$ \\ $$$$\mathrm{H}.\mathrm{T}. \\ $$

Question Number 45646    Answers: 0   Comments: 2

According to relativistic theory, E^2 = p^2 c^2 +m_0 ^2 c^4 where m_0 is rest mass. For photon E= pc... (m_0 =0 for photon) For electron E=mc^2 ... Unlike photon ,Why p^2 c^2 is neglected in case of electron ?

$${According}\:{to}\:{relativistic}\:{theory}, \\ $$$${E}^{\mathrm{2}} =\:{p}^{\mathrm{2}} {c}^{\mathrm{2}} +{m}_{\mathrm{0}} ^{\mathrm{2}} {c}^{\mathrm{4}} \:{where}\:{m}_{\mathrm{0}} \:{is}\:{rest}\:{mass}. \\ $$$${For}\:{photon}\:{E}=\:{pc}... \\ $$$$\left({m}_{\mathrm{0}} =\mathrm{0}\:{for}\:{photon}\right) \\ $$$${For}\:{electron}\:{E}={mc}^{\mathrm{2}} ... \\ $$$${Unlike}\:{photon}\:,{Why}\:{p}^{\mathrm{2}} {c}^{\mathrm{2}} \:{is}\:{neglected}\:\: \\ $$$${in}\:{case}\:{of}\:{electron}\:? \\ $$

Question Number 45645    Answers: 1   Comments: 0

Question Number 45641    Answers: 2   Comments: 1

Question Number 45639    Answers: 3   Comments: 0

Question Number 45638    Answers: 1   Comments: 0

Question Number 45635    Answers: 0   Comments: 2

1)find f(x)=∫_0 ^1 ln(1+xt^3 )dt with ∣x∣<1 2) calculate ∫_0 ^1 ln(2+t^3 )dt .

$$\left.\mathrm{1}\right){find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{xt}^{\mathrm{3}} \right){dt}\:\:{with}\:\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{2}+{t}^{\mathrm{3}} \right){dt}\:. \\ $$

Question Number 45634    Answers: 0   Comments: 0

1)find ∫ ln(1−x^6 )dx 2) calculate ∫_0 ^1 ln(1−x^6 )dx

$$\left.\mathrm{1}\right){find}\:\int\:{ln}\left(\mathrm{1}−{x}^{\mathrm{6}} \right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{x}^{\mathrm{6}} \right){dx} \\ $$

Question Number 45632    Answers: 0   Comments: 2

1)find ∫ ln(1+x^3 )dx 2) calculate ∫_0 ^1 ln(1+x^3 )ex

$$\left.\mathrm{1}\right){find}\:\int\:{ln}\left(\mathrm{1}+{x}^{\mathrm{3}} \right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{x}^{\mathrm{3}} \right){ex} \\ $$

Question Number 45630    Answers: 2   Comments: 0

Question Number 45610    Answers: 0   Comments: 1

Question Number 45609    Answers: 0   Comments: 3

Question Number 45608    Answers: 1   Comments: 0

Question Number 45602    Answers: 2   Comments: 0

Question Number 45601    Answers: 0   Comments: 0

Question Number 45600    Answers: 0   Comments: 2

find f(x,y) =∫_0 ^(π/2) ln(x+y sinθ)dθ with ∣y∣<∣x∣ 2) find f(2,3) 3)find f((√2),(√3)) .

$${find}\:{f}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({x}+{y}\:{sin}\theta\right){d}\theta\:\:{with}\:\:\mid{y}\mid<\mid{x}\mid \\ $$$$\left.\mathrm{2}\right)\:{find}\:{f}\left(\mathrm{2},\mathrm{3}\right) \\ $$$$\left.\mathrm{3}\right){find}\:{f}\left(\sqrt{\mathrm{2}},\sqrt{\mathrm{3}}\right)\:. \\ $$

Question Number 45599    Answers: 0   Comments: 1

1) calculate A_n = ∫_0 ^n (((−1)^([x]) )/(2x+1−[x]))dx 2) find lim_(n→+∞) A_n 3) study the serie Σ A_n

$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{\mathrm{2}{x}+\mathrm{1}−\left[{x}\right]}{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} {A}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{serie}\:\:\Sigma\:{A}_{{n}} \\ $$

Question Number 45598    Answers: 0   Comments: 1

calculate Σ_(n=1) ^∞ ((2n+1)/(n^2 (4n^2 −1)))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\mathrm{2}{n}+\mathrm{1}}{{n}^{\mathrm{2}} \left(\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}\right)} \\ $$

Question Number 45594    Answers: 0   Comments: 1

calculate Σ_(n=1) ^∞ (1/((4n^2 −1)^2 ))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 45592    Answers: 0   Comments: 0

Question Number 45589    Answers: 0   Comments: 0

pl help me sir mathtype 6c seril key

$$\mathrm{pl}\:\mathrm{help}\:\mathrm{me}\:\mathrm{sir}\:\mathrm{mathtype}\:\mathrm{6c}\:\:\mathrm{seril}\:\mathrm{key} \\ $$

  Pg 1630      Pg 1631      Pg 1632      Pg 1633      Pg 1634      Pg 1635      Pg 1636      Pg 1637      Pg 1638      Pg 1639   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com