Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1635

Question Number 35630    Answers: 0   Comments: 5

1) find the value of f(x)=∫_0 ^∞ ((1−cos(xt))/t^2 ) e^(−t) dt 2) calculate ∫_0 ^∞ ((1−cos(t))/t^2 ) e^(−t) dt .

$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}−{cos}\left({xt}\right)}{{t}^{\mathrm{2}} }\:{e}^{−{t}} {dt} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}−{cos}\left({t}\right)}{{t}^{\mathrm{2}} }\:{e}^{−{t}} \:{dt}\:. \\ $$

Question Number 35629    Answers: 0   Comments: 0

let f(x,y) = ∫_x ^y ((ln(t)ln(1−t))/t)dt with 0<x<y<1 give f(x,y) at form of serie .

$${let}\:\:{f}\left({x},{y}\right)\:=\:\int_{{x}} ^{{y}} \:\:\frac{{ln}\left({t}\right){ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt}\:\:{with}\:\mathrm{0}<{x}<{y}<\mathrm{1} \\ $$$${give}\:{f}\left({x},{y}\right)\:{at}\:{form}\:{of}\:{serie}\:. \\ $$

Question Number 35628    Answers: 0   Comments: 1

find the value of I =∫_0 ^1 ((ln(t)ln(1−t))/t)dt

$${find}\:{the}\:{value}\:{of}\:\:{I}\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({t}\right){ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt} \\ $$

Question Number 35627    Answers: 0   Comments: 0

study the convergence of I =∫_0 ^∞ (dx/((1+x^2 ∣sinx∣)^(3/2) ))

$${study}\:{the}\:{convergence}\:{of}\: \\ $$$${I}\:\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \mid{sinx}\mid\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$

Question Number 35626    Answers: 0   Comments: 0

1) study the diagonalisstion of the matrice A = (((1+a^2 a 0)),((a 1+a^2 a)) ) ( 0 a 1+a^2 ) 2) calculate A^n

$$\left.\mathrm{1}\right)\:{study}\:{the}\:{diagonalisstion}\:{of}\:{the}\:{matrice} \\ $$$${A}\:=\begin{pmatrix}{\mathrm{1}+{a}^{\mathrm{2}} \:\:\:\:\:{a}\:\:\:\:\:\:\:\mathrm{0}}\\{{a}\:\:\:\:\:\:\:\:\:\mathrm{1}+{a}^{\mathrm{2}} \:\:\:\:\:{a}}\end{pmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left(\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:{a}\:\:\:\:\mathrm{1}+{a}^{\mathrm{2}} \:\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{A}^{{n}} \\ $$

Question Number 35625    Answers: 0   Comments: 0

find lim_(ξ→0) ∫_0 ^(π/2) (dx/(√( sin^2 x +ξ cos^2 x)))

$${find}\:{lim}_{\xi\rightarrow\mathrm{0}} \:\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\frac{{dx}}{\sqrt{\:{sin}^{\mathrm{2}} {x}\:+\xi\:{cos}^{\mathrm{2}} {x}}} \\ $$

Question Number 35624    Answers: 0   Comments: 0

let R_n = Σ_(k=n+1) ^∞ (1/(k!)) find a equivalent of R_n when n→+∞

$${let}\:{R}_{{n}} \:=\:\sum_{{k}={n}+\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{k}!} \\ $$$${find}\:{a}\:{equivalent}\:{of}\:{R}_{{n}} \:\:{when}\:{n}\rightarrow+\infty \\ $$

Question Number 35623    Answers: 0   Comments: 0

solve the differencial system {_(y^′ = y +2z +t^2 ) ^(x^′ = y +t^2 ) {z^′ =2x−2y

$${solve}\:{the}\:{differencial}\:{system} \\ $$$$\left\{_{{y}^{'} =\:{y}\:+\mathrm{2}{z}\:+{t}^{\mathrm{2}} } ^{{x}^{'} \:\:=\:{y}\:+{t}^{\mathrm{2}} } \right. \\ $$$$\left\{{z}^{'} \:=\mathrm{2}{x}−\mathrm{2}{y}\right. \\ $$

Question Number 35622    Answers: 0   Comments: 0

find all matrices M ∈M_3 (R) / M^2 =M

$${find}\:{all}\:{matrices}\:{M}\:\in{M}_{\mathrm{3}} \left({R}\right)\:\:/\:\:{M}^{\mathrm{2}} \:={M} \\ $$

Question Number 35621    Answers: 0   Comments: 2

calculate S(x) = Σ_(n=0) ^∞ (x^(3n) /(3n+1)) after finding the radius of convergence . 2) find the value of Σ_(n=0) ^∞ (1/((3n+1)8^n ))

$${calculate}\:\:\:{S}\left({x}\right)\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{3}{n}} }{\mathrm{3}{n}+\mathrm{1}}\:\:{after}\:{finding} \\ $$$${the}\:{radius}\:{of}\:{convergence}\:. \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)\mathrm{8}^{{n}} } \\ $$

Question Number 35620    Answers: 0   Comments: 1

let f(x) =e^(−x) sinx odd 2π periodic developp f at fourier serie .

$${let}\:\:{f}\left({x}\right)\:={e}^{−{x}} \:{sinx}\:\:\:{odd}\:\mathrm{2}\pi\:{periodic}\: \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\:. \\ $$

Question Number 35619    Answers: 0   Comments: 2

let f(x) = x∣x∣ odd 2π periodic developp f at fourier serie .

$${let}\:{f}\left({x}\right)\:=\:{x}\mid{x}\mid\:\:{odd}\:\mathrm{2}\pi\:{periodic} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\:. \\ $$

Question Number 35618    Answers: 0   Comments: 1

integrate the e.d. y′ +e^(−2x) y = (2x+1)cosx

$${integrate}\:{the}\:{e}.{d}.\:{y}'\:\:+{e}^{−\mathrm{2}{x}} {y}\:=\:\left(\mathrm{2}{x}+\mathrm{1}\right){cosx} \\ $$

Question Number 35617    Answers: 0   Comments: 0

integrate the e.d . y^(′′) +(x−1)y = e^(−x) sinx with y(0) =1

$${integrate}\:{the}\:{e}.{d}\:.\:\:{y}^{''} \:\:+\left({x}−\mathrm{1}\right){y}\:=\:{e}^{−{x}} \:{sinx} \\ $$$${with}\:{y}\left(\mathrm{0}\right)\:=\mathrm{1} \\ $$

Question Number 35616    Answers: 0   Comments: 0

integrate the d.e y^(′′) −2y^′ +y = x^2 ch(x)

$${integrate}\:{the}\:{d}.{e}\:\:{y}^{''} \:−\mathrm{2}{y}^{'} \:+{y}\:=\:{x}^{\mathrm{2}} {ch}\left({x}\right) \\ $$

Question Number 35615    Answers: 0   Comments: 0

let S_n = Σ_(k=0) ^n (1/(3k+1)) calculate S_n interms of H_n with H_n =Σ_(k=1) ^n (1/k)

$${let}\:\:{S}_{{n}} \:=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\mathrm{1}}{\mathrm{3}{k}+\mathrm{1}} \\ $$$${calculate}\:{S}_{{n}} \:\:\:{interms}\:{of}\:{H}_{{n}} \:\:\:{with}\:{H}_{{n}} \:=\sum_{{k}=\mathrm{1}} ^{{n}} \frac{\mathrm{1}}{{k}} \\ $$

Question Number 35614    Answers: 0   Comments: 0

calculate Σ_(n=1) ^∞ (−1)^(n−1) (x^(2n+1) /(4n^2 −1))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:\:\:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}} \\ $$

Question Number 35613    Answers: 0   Comments: 0

find I_(a,b) = ∫_(−∞) ^(+∞) (e^x /((1+a e^x )(1+be^x )))dx ..

$${find}\:\:{I}_{{a},{b}} =\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\frac{{e}^{{x}} }{\left(\mathrm{1}+{a}\:{e}^{{x}} \right)\left(\mathrm{1}+{be}^{{x}} \right)}{dx}\:.. \\ $$

Question Number 35612    Answers: 0   Comments: 0

calculate I =∫_0 ^∞ (((1+t)^(−(1/4)) −(1+t)^(−(3/4)) )/t)dt

$${calculate}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\left(\mathrm{1}+{t}\right)^{−\frac{\mathrm{1}}{\mathrm{4}}} \:\:\:−\left(\mathrm{1}+{t}\right)^{−\frac{\mathrm{3}}{\mathrm{4}}} }{{t}}{dt}\: \\ $$

Question Number 35611    Answers: 0   Comments: 0

let h(t) = e^(t−e^t ) and for n≥0 we put h_n (t) =nh(nt) calculate ∫_(−∞) ^(+∞) h_n (t)dt .

$${let}\:{h}\left({t}\right)\:=\:{e}^{{t}−{e}^{{t}} } \:\:\:\:{and}\:{for}\:{n}\geqslant\mathrm{0}\:{we}\:{put} \\ $$$${h}_{{n}} \left({t}\right)\:={nh}\left({nt}\right) \\ $$$${calculate}\:\:\int_{−\infty} ^{+\infty} \:{h}_{{n}} \left({t}\right){dt}\:. \\ $$

Question Number 35610    Answers: 0   Comments: 0

let give x∈]0,2π[ and a ∈R,b∈ R prove that ((π−x)/2) = arctan(((sinx)/(1−cosx))) 2) prove that ∣arctan(a)−arctan(b)∣≤∣a−b∣ 3)letθ ∈]0,(π/2)[ , x ∈[θ,2π−θ] , r∈[0,1[ prove that ∣ϕ(x,r) −((π−x)/2)∣≤ ((1−r)/((1−cosθ)^2 ))

$$\left.{let}\:{give}\:{x}\in\right]\mathrm{0},\mathrm{2}\pi\left[\:\:{and}\:{a}\:\in{R},{b}\in\:{R}\right. \\ $$$${prove}\:{that}\:\:\frac{\pi−{x}}{\mathrm{2}}\:=\:{arctan}\left(\frac{{sinx}}{\mathrm{1}−{cosx}}\right) \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\mid{arctan}\left({a}\right)−{arctan}\left({b}\right)\mid\leqslant\mid{a}−{b}\mid \\ $$$$\left.\mathrm{3}\left.\right){let}\theta\:\in\right]\mathrm{0},\frac{\pi}{\mathrm{2}}\left[\:\:,\:{x}\:\in\left[\theta,\mathrm{2}\pi−\theta\right]\:,\:{r}\in\left[\mathrm{0},\mathrm{1}\left[\:{prove}\:{that}\right.\right.\right. \\ $$$$\mid\varphi\left({x},{r}\right)\:−\frac{\pi−{x}}{\mathrm{2}}\mid\leqslant\:\:\frac{\mathrm{1}−{r}}{\left(\mathrm{1}−{cos}\theta\right)^{\mathrm{2}} } \\ $$

Question Number 35609    Answers: 0   Comments: 0

let r ∈[0,1[ and x∈ R and ϕ(x,r) = arctan( ((rsinx)/(1−r cosx))) 1) prove that (∂ϕ/∂x)(x,r) =Σ_(n=1) ^∞ r^n cos(nx) 2)prove that ϕ(x,r) = Σ_(n=1) ^∞ r^n ((sin(nx))/n)

$${let}\:{r}\:\in\left[\mathrm{0},\mathrm{1}\left[\:{and}\:{x}\in\:{R}\:\:{and}\:\right.\right. \\ $$$$\varphi\left({x},{r}\right)\:=\:{arctan}\left(\:\frac{{rsinx}}{\mathrm{1}−{r}\:{cosx}}\right) \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\frac{\partial\varphi}{\partial{x}}\left({x},{r}\right)\:\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:{r}^{{n}} \:{cos}\left({nx}\right) \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\varphi\left({x},{r}\right)\:=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{r}^{{n}} \:\:\frac{{sin}\left({nx}\right)}{{n}} \\ $$$$ \\ $$

Question Number 35608    Answers: 0   Comments: 0

let r∈[0,1[ and x from R F(x,r) = (1/(2π)) ∫_0 ^(2π) (((1−r^2 )f(t))/(1−2r cos(t−x) +r^2 ))dt with f ∈ C^0 (R) 2π periodic and ∣∣f∣∣=sup_(t∈R) ∣f(t)∣ prove that F(x,r)= (a_0 /2) + Σ_(n=1) ^∞ r^n (a_n cos(nx) +b_n sin(nx)) with a_n = (1/π) ∫_0 ^(2π) f(t) cos(nt)dt and b_n = (1/π) ∫_0 ^(2π) f(t)sin(nt)dt

$${let}\:{r}\in\left[\mathrm{0},\mathrm{1}\left[\:{and}\:{x}\:{from}\:{R}\right.\right. \\ $$$${F}\left({x},{r}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}\pi}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\frac{\left(\mathrm{1}−{r}^{\mathrm{2}} \right){f}\left({t}\right)}{\mathrm{1}−\mathrm{2}{r}\:{cos}\left({t}−{x}\right)\:+{r}^{\mathrm{2}} }{dt}\:\:{with} \\ $$$${f}\:\:\in\:{C}^{\mathrm{0}} \left({R}\right)\:\:\mathrm{2}\pi\:{periodic}\:\:{and}\:\:\mid\mid{f}\mid\mid={sup}_{{t}\in{R}} \mid{f}\left({t}\right)\mid \\ $$$$\:{prove}\:{that}\:{F}\left({x},{r}\right)=\:\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\:\sum_{{n}=\mathrm{1}} ^{\infty} {r}^{{n}} \left({a}_{{n}} {cos}\left({nx}\right)\:+{b}_{{n}} {sin}\left({nx}\right)\right) \\ $$$${with}\:{a}_{{n}} =\:\frac{\mathrm{1}}{\pi}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:{f}\left({t}\right)\:{cos}\left({nt}\right){dt}\:{and} \\ $$$${b}_{{n}} =\:\frac{\mathrm{1}}{\pi}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:{f}\left({t}\right){sin}\left({nt}\right){dt} \\ $$

Question Number 35606    Answers: 0   Comments: 2

Question Number 35605    Answers: 0   Comments: 0

let r∈[0,1[ and θ ∈ R,x∈ R prove that 1) 1+ 2 Σ_(n=1) ^(+∞) r^n cosθ = ((1−r^2 )/(1−2r cosθ +r^2 )) 2)1 =(1/(2π)) ∫_0 ^(2π) (((1−r^2 ))/(1−2rcos(t−x) +r^2 ))dt

$${let}\:{r}\in\left[\mathrm{0},\mathrm{1}\left[\:{and}\:\theta\:\in\:{R},{x}\in\:{R}\:{prove}\:{that}\right.\right. \\ $$$$\left.\mathrm{1}\right)\:\mathrm{1}+\:\mathrm{2}\:\sum_{{n}=\mathrm{1}} ^{+\infty} \:{r}^{{n}} {cos}\theta\:=\:\frac{\mathrm{1}−{r}^{\mathrm{2}} }{\mathrm{1}−\mathrm{2}{r}\:{cos}\theta\:+{r}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\mathrm{1}\:=\frac{\mathrm{1}}{\mathrm{2}\pi}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\:\frac{\left(\mathrm{1}−{r}^{\mathrm{2}} \right)}{\mathrm{1}−\mathrm{2}{rcos}\left({t}−{x}\right)\:+{r}^{\mathrm{2}} }{dt} \\ $$

Question Number 35603    Answers: 0   Comments: 0

let x ∈ R and {x}=x −[x] prove that ∫_1 ^(+∞) (({x})/x^2 ) dx is convergent and find its value .

$${let}\:{x}\:\in\:{R}\:\:{and}\:\left\{{x}\right\}={x}\:−\left[{x}\right] \\ $$$${prove}\:{that}\:\:\int_{\mathrm{1}} ^{+\infty} \:\frac{\left\{{x}\right\}}{{x}^{\mathrm{2}} }\:{dx}\:{is}\:{convergent}\:{and}\:{find} \\ $$$${its}\:{value}\:. \\ $$

  Pg 1630      Pg 1631      Pg 1632      Pg 1633      Pg 1634      Pg 1635      Pg 1636      Pg 1637      Pg 1638      Pg 1639   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com