Question and Answers Forum |
AllQuestion and Answers: Page 1635 |
1. ∫tan^3 (2x)sec^5 (2x) dx 2. ∫_0 ^(π/3) tan^5 (x)sec^6 (x) dx 3. ∫tan^6 (ay) dy |
calculate ∫_0 ^∞ e^(−x) (√(1+e^(−2x) ))dx |
calculate ∫_0 ^∞ e^(−2x) (√(1+e^(−4x) ))dx . |
let α>0 find ∫_0 ^∞ (e^(−αx) /(√(1+e^(−2αx) )))dx . |
prove that ∫ (dx/(√(1+x^2 ))) =ln(x+(√(1+x^2 ))) +c 2) find ∫ (dx/(√(a+x^2 ))) with a>0 |
f is a function positive and C^1 1) find ∫ (f^′ /(2(√f)(√(1+f))))dx 2)let A_n = ∫_0 ^1 (x^(n/2) /(x(√(1+x^n )))) calculate A_n and lim_(n→+∞) A_n |
calculate ∫_0 ^π ((sinx)/(√(1+cos^2 x)))dx |
let x>0 find F(x) = ∫_(−∞) ^(+∞) ((arctan(xt^2 ))/(1+t^2 ))dt |
let n from N and find the value of A_n = ∫_1 ^(+∞) (dt/(t^n (√(t−1)))) |
calculate ∫_1 ^(+∞) (dx/(x^4 (√(x−1)))) |
prove that ∫_0 ^1 (1/(1+(t^a /2)))dt =Σ_(n=0) ^∞ (((−1)^n )/(2^n (na+1))) 2) find the value of Σ_(n=0) ^∞ (((−1)^n )/(2^n (3n+1))) |
let x and y from R prove that ∣cos(x+iy)∣=cos^2 x +sh^2 y ∣sin(x+iy)∣^2 =sin^2 x +sh^2 y |
find I = ∫_0 ^∞ ((cos(λx))/(ch(2x)))dx |
find ∫_0 ^∞ ((sin(2x))/(sh(3x)))dx |
let I_n = ∫_0 ^(2π) (dx/((p +cost)^n )) with p>1 find the value of I_n |
let p>1 calculate ∫_0 ^(2π) (dt/((p +cost)^2 )) |
prove that arctan(x)= (i/2)ln(((i+x)/(i−x))) for ∣x∣<1 |
find lim_(x→0) ((e^x −[x])/x) |
let x from R find the value of f(x)= ∫_0 ^π ln(x^2 −2x cosθ +1)dθ |
1) find S(x) = Σ_(n=1) ^∞ ((cos(nx))/n) 2) find Σ_(n=1) ^∞ (((−1)^n )/n) |
find Σ_(n=1) ^∞ (((−1)^n )/n^2 ) |
find C = Σ_(n=1) ^∞ ((cos(nx))/n^2 )dx and S=Σ_(n=1) ^∞ ((sin(nx))/n^2 ) |
calculate ∫_0 ^(+∞) e^(−3t) ln(1+e^t )dt . |
find ∫ (dx/((√(2x+1)) +(√(2x−1)))) |
find ∫_1 ^(+∞) (dx/((x^2 +2)(√(x+3)))) |
find I(λ)= ∫_0 ^(π/2) ((xdx)/(λ +tanx)) λ from R. |
Pg 1630 Pg 1631 Pg 1632 Pg 1633 Pg 1634 Pg 1635 Pg 1636 Pg 1637 Pg 1638 Pg 1639 |