Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1635

Question Number 38130    Answers: 4   Comments: 0

1. ∫tan^3 (2x)sec^5 (2x) dx 2. ∫_0 ^(π/3) tan^5 (x)sec^6 (x) dx 3. ∫tan^6 (ay) dy

1.tan3(2x)sec5(2x)dx2.0π3tan5(x)sec6(x)dx3.tan6(ay)dy

Question Number 38127    Answers: 0   Comments: 1

calculate ∫_0 ^∞ e^(−x) (√(1+e^(−2x) ))dx

calculate0ex1+e2xdx

Question Number 38126    Answers: 1   Comments: 2

calculate ∫_0 ^∞ e^(−2x) (√(1+e^(−4x) ))dx .

calculate0e2x1+e4xdx.

Question Number 38125    Answers: 1   Comments: 1

let α>0 find ∫_0 ^∞ (e^(−αx) /(√(1+e^(−2αx) )))dx .

letα>0find0eαx1+e2αxdx.

Question Number 38124    Answers: 1   Comments: 0

prove that ∫ (dx/(√(1+x^2 ))) =ln(x+(√(1+x^2 ))) +c 2) find ∫ (dx/(√(a+x^2 ))) with a>0

provethatdx1+x2=ln(x+1+x2)+c2)finddxa+x2witha>0

Question Number 38123    Answers: 2   Comments: 1

f is a function positive and C^1 1) find ∫ (f^′ /(2(√f)(√(1+f))))dx 2)let A_n = ∫_0 ^1 (x^(n/2) /(x(√(1+x^n )))) calculate A_n and lim_(n→+∞) A_n

fisafunctionpositiveandC11)findf2f1+fdx2)letAn=01xn2x1+xncalculateAnandlimn+An

Question Number 38122    Answers: 1   Comments: 0

calculate ∫_0 ^π ((sinx)/(√(1+cos^2 x)))dx

calculate0πsinx1+cos2xdx

Question Number 38121    Answers: 0   Comments: 5

let x>0 find F(x) = ∫_(−∞) ^(+∞) ((arctan(xt^2 ))/(1+t^2 ))dt

letx>0findF(x)=+arctan(xt2)1+t2dt

Question Number 38120    Answers: 0   Comments: 2

let n from N and find the value of A_n = ∫_1 ^(+∞) (dt/(t^n (√(t−1))))

letnfromNandfindthevalueofAn=1+dttnt1

Question Number 38119    Answers: 0   Comments: 1

calculate ∫_1 ^(+∞) (dx/(x^4 (√(x−1))))

calculate1+dxx4x1

Question Number 38118    Answers: 0   Comments: 1

prove that ∫_0 ^1 (1/(1+(t^a /2)))dt =Σ_(n=0) ^∞ (((−1)^n )/(2^n (na+1))) 2) find the value of Σ_(n=0) ^∞ (((−1)^n )/(2^n (3n+1)))

provethat0111+ta2dt=n=0(1)n2n(na+1)2)findthevalueofn=0(1)n2n(3n+1)

Question Number 38117    Answers: 0   Comments: 0

let x and y from R prove that ∣cos(x+iy)∣=cos^2 x +sh^2 y ∣sin(x+iy)∣^2 =sin^2 x +sh^2 y

letxandyfromRprovethatcos(x+iy)∣=cos2x+sh2ysin(x+iy)2=sin2x+sh2y

Question Number 38116    Answers: 0   Comments: 1

find I = ∫_0 ^∞ ((cos(λx))/(ch(2x)))dx

findI=0cos(λx)ch(2x)dx

Question Number 38115    Answers: 0   Comments: 0

find ∫_0 ^∞ ((sin(2x))/(sh(3x)))dx

find0sin(2x)sh(3x)dx

Question Number 38114    Answers: 0   Comments: 2

let I_n = ∫_0 ^(2π) (dx/((p +cost)^n )) with p>1 find the value of I_n

letIn=02πdx(p+cost)nwithp>1findthevalueofIn

Question Number 38113    Answers: 0   Comments: 2

let p>1 calculate ∫_0 ^(2π) (dt/((p +cost)^2 ))

letp>1calculate02πdt(p+cost)2

Question Number 38112    Answers: 1   Comments: 1

prove that arctan(x)= (i/2)ln(((i+x)/(i−x))) for ∣x∣<1

provethatarctan(x)=i2ln(i+xix)forx∣<1

Question Number 38111    Answers: 1   Comments: 1

find lim_(x→0) ((e^x −[x])/x)

findlimx0ex[x]x

Question Number 38110    Answers: 0   Comments: 0

let x from R find the value of f(x)= ∫_0 ^π ln(x^2 −2x cosθ +1)dθ

letxfromRfindthevalueoff(x)=0πln(x22xcosθ+1)dθ

Question Number 38109    Answers: 0   Comments: 2

1) find S(x) = Σ_(n=1) ^∞ ((cos(nx))/n) 2) find Σ_(n=1) ^∞ (((−1)^n )/n)

1)findS(x)=n=1cos(nx)n2)findn=1(1)nn

Question Number 38108    Answers: 0   Comments: 1

find Σ_(n=1) ^∞ (((−1)^n )/n^2 )

findn=1(1)nn2

Question Number 38107    Answers: 0   Comments: 0

find C = Σ_(n=1) ^∞ ((cos(nx))/n^2 )dx and S=Σ_(n=1) ^∞ ((sin(nx))/n^2 )

findC=n=1cos(nx)n2dxandS=n=1sin(nx)n2

Question Number 38106    Answers: 0   Comments: 1

calculate ∫_0 ^(+∞) e^(−3t) ln(1+e^t )dt .

calculate0+e3tln(1+et)dt.

Question Number 38105    Answers: 1   Comments: 0

find ∫ (dx/((√(2x+1)) +(√(2x−1))))

finddx2x+1+2x1

Question Number 38104    Answers: 1   Comments: 0

find ∫_1 ^(+∞) (dx/((x^2 +2)(√(x+3))))

find1+dx(x2+2)x+3

Question Number 38103    Answers: 0   Comments: 0

find I(λ)= ∫_0 ^(π/2) ((xdx)/(λ +tanx)) λ from R.

findI(λ)=0π2xdxλ+tanxλfromR.

  Pg 1630      Pg 1631      Pg 1632      Pg 1633      Pg 1634      Pg 1635      Pg 1636      Pg 1637      Pg 1638      Pg 1639   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com