Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1634

Question Number 44674    Answers: 0   Comments: 1

solving some integrals we might meet some of the following functions which cannot be solved with elementar knowledge but tables should exist somewhere in the depth of the www... these links might be interesting exponential integral ∫(e^(−x) /x)dx en.wikipedia.org/wiki/Exponential_integral logarithmic integral ∫(dx/(ln x)) en.wikipedia.org/wiki/Logarithmic_integral_function also see en.wikipedia.org/wiki/Polylogarithm trigonometric integrals i.e. ∫((sin x)/x)dx en.wikipedia.org/wiki/Trigonometric_integral

$$\mathrm{solving}\:\mathrm{some}\:\mathrm{integrals}\:\mathrm{we}\:\mathrm{might}\:\mathrm{meet}\:\mathrm{some} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{functions}\:\mathrm{which}\:\mathrm{cannot}\:\mathrm{be} \\ $$$$\mathrm{solved}\:\mathrm{with}\:\mathrm{elementar}\:\mathrm{knowledge}\:\mathrm{but}\:\mathrm{tables} \\ $$$$\mathrm{should}\:\mathrm{exist}\:\mathrm{somewhere}\:\mathrm{in}\:\mathrm{the}\:\mathrm{depth}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{www}... \\ $$$$\mathrm{these}\:\mathrm{links}\:\mathrm{might}\:\mathrm{be}\:\mathrm{interesting} \\ $$$$ \\ $$$$\mathrm{exponential}\:\mathrm{integral} \\ $$$$\int\frac{\mathrm{e}^{−{x}} }{{x}}{dx} \\ $$$$\mathrm{en}.\mathrm{wikipedia}.\mathrm{org}/\mathrm{wiki}/\mathrm{Exponential\_integral} \\ $$$$ \\ $$$$\mathrm{logarithmic}\:\mathrm{integral} \\ $$$$\int\frac{{dx}}{\mathrm{ln}\:{x}} \\ $$$$\mathrm{en}.\mathrm{wikipedia}.\mathrm{org}/\mathrm{wiki}/\mathrm{Logarithmic\_integral\_function} \\ $$$$\mathrm{also}\:\mathrm{see} \\ $$$$\mathrm{en}.\mathrm{wikipedia}.\mathrm{org}/\mathrm{wiki}/\mathrm{Polylogarithm} \\ $$$$ \\ $$$$\mathrm{trigonometric}\:\mathrm{integrals} \\ $$$$\mathrm{i}.\mathrm{e}.\:\int\frac{\mathrm{sin}\:{x}}{{x}}{dx} \\ $$$$\mathrm{en}.\mathrm{wikipedia}.\mathrm{org}/\mathrm{wiki}/\mathrm{Trigonometric\_integral} \\ $$

Question Number 44570    Answers: 1   Comments: 0

Question Number 44573    Answers: 1   Comments: 1

Question Number 44575    Answers: 1   Comments: 3

Question Number 44557    Answers: 1   Comments: 2

Question Number 44548    Answers: 0   Comments: 0

(a) The area of a sector of a circle of radius 12cm is 132cm^2 . If the sector is folded such that its straight edges coincide to form a cone. Find the radius of the base of the cone [ Take π = ((22)/7) ] . (b) A circle of centre O has radius 5cm. A chord PQ of the circle is 6cm long. caclculate: (i) The distance of the chord from the centre O (ii) The angle POQ

$$\left(\mathrm{a}\right) \\ $$$$\mathrm{The}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{sector}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{radius}\:\:\mathrm{12cm}\:\mathrm{is}\:\:\mathrm{132cm}^{\mathrm{2}} \:.\:\:\mathrm{If}\:\mathrm{the}\:\mathrm{sector} \\ $$$$\mathrm{is}\:\mathrm{folded}\:\mathrm{such}\:\mathrm{that}\:\mathrm{its}\:\mathrm{straight}\:\mathrm{edges}\:\mathrm{coincide}\:\mathrm{to}\:\mathrm{form}\:\mathrm{a}\:\mathrm{cone}.\:\mathrm{Find}\:\mathrm{the}\: \\ $$$$\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{base}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cone}\:\:\:\:\left[\:\:\mathrm{Take}\:\:\:\:\pi\:\:=\:\:\frac{\mathrm{22}}{\mathrm{7}}\:\right]\:. \\ $$$$ \\ $$$$\left(\mathrm{b}\right)\:\:\: \\ $$$$\mathrm{A}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{centre}\:\mathrm{O}\:\mathrm{has}\:\mathrm{radius}\:\mathrm{5cm}.\:\:\mathrm{A}\:\mathrm{chord}\:\mathrm{PQ}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{is}\:\mathrm{6cm}\:\mathrm{long}. \\ $$$$\mathrm{caclculate}: \\ $$$$\:\:\:\:\left(\mathrm{i}\right)\:\:\:\mathrm{The}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{the}\:\mathrm{chord}\:\mathrm{from}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{O} \\ $$$$\:\:\:\left(\mathrm{ii}\right)\:\:\mathrm{The}\:\mathrm{angle}\:\mathrm{POQ} \\ $$

Question Number 44546    Answers: 1   Comments: 0

$$ \\ $$

Question Number 44543    Answers: 1   Comments: 3

If y =f(x) = ax^2 +bx+c and at some x, say x= p ∫_0 ^( p) ydx = y(p)= y ′(p) = y ′′(p)= p , then find p .

$${If}\:\:{y}\:={f}\left({x}\right)\:=\:{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$${and}\:\:{at}\:{some}\:{x},\:{say}\:\:{x}=\:{p} \\ $$$$\int_{\mathrm{0}} ^{\:\:{p}} {ydx}\:=\:{y}\left({p}\right)=\:{y}\:'\left({p}\right)\:=\:{y}\:''\left({p}\right)=\:{p}\:, \\ $$$${then}\:{find}\:\boldsymbol{{p}}\:. \\ $$

Question Number 44541    Answers: 1   Comments: 1

Find the remainder when the polynomial p(y)=y^4 −3y^2 +2y+1 is divided by y−1.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when}\:\mathrm{the} \\ $$$$\mathrm{polynomial}\:{p}\left({y}\right)={y}^{\mathrm{4}} −\mathrm{3}{y}^{\mathrm{2}} +\mathrm{2}{y}+\mathrm{1}\:\mathrm{is} \\ $$$$\mathrm{divided}\:\mathrm{by}\:{y}−\mathrm{1}. \\ $$

Question Number 44537    Answers: 1   Comments: 0

Question Number 44535    Answers: 0   Comments: 1

Question Number 44527    Answers: 0   Comments: 2

Question Number 44526    Answers: 1   Comments: 1

Find moment of inertia of the area bounded by the curve r^2 =a^2 cos2θ about its axis

$$\mathrm{Find}\:\mathrm{moment}\:\mathrm{of}\:\mathrm{inertia}\:\mathrm{of}\:\mathrm{the}\:\mathrm{area}\:\mathrm{bounded} \\ $$$$\mathrm{by}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{r}^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} \mathrm{cos2}\theta \\ $$$$\mathrm{about}\:\mathrm{its}\:\mathrm{axis} \\ $$

Question Number 44515    Answers: 1   Comments: 0

let g(x) =∫_0 ^∞ ((t ln(t)dt)/((1+xt)^3 )) with x>0 1) give a explicit form of g(x) 2) calculate ∫_0 ^∞ ((t ln(t))/((1+t)^3 ))dt 3) calculate ∫_0 ^∞ ((tln(t))/((1+2t)^3 )) dt 4) calculate A(θ) =∫_0 ^∞ ((t ln(t))/((1+t sinθ)^3 ))dt with 0<θ<(π/2)

$${let}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}\:{ln}\left({t}\right){dt}}{\left(\mathrm{1}+{xt}\right)^{\mathrm{3}} }\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{give}\:{a}\:{explicit}\:{form}\:{of}\:{g}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}\:{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{3}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{tln}\left({t}\right)}{\left(\mathrm{1}+\mathrm{2}{t}\right)^{\mathrm{3}} }\:{dt} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{A}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}\:{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\:{sin}\theta\right)^{\mathrm{3}} }{dt}\:\:{with}\:\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$

Question Number 44512    Answers: 1   Comments: 1

prove that:−∫2^(ln x) dx = ((x.2^(ln x) )/(ln(xe))) +C

$$\boldsymbol{{prove}}\:\boldsymbol{{that}}:−\int\mathrm{2}^{\boldsymbol{\mathrm{ln}}\:\boldsymbol{\mathrm{x}}} \:\boldsymbol{\mathrm{dx}}\:=\:\frac{\boldsymbol{\mathrm{x}}.\mathrm{2}^{\boldsymbol{\mathrm{ln}}\:\boldsymbol{\mathrm{x}}} }{\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{xe}}\right)}\:+\boldsymbol{\mathrm{C}} \\ $$$$ \\ $$

Question Number 44509    Answers: 1   Comments: 1

∫(√(tan x)) dx=?

$$\int\sqrt{\boldsymbol{\mathrm{tan}}\:\boldsymbol{\mathrm{x}}}\:\:\boldsymbol{\mathrm{dx}}=? \\ $$

Question Number 44508    Answers: 1   Comments: 1

∫(√(sin x ))dx=?

$$\int\sqrt{\boldsymbol{\mathrm{sin}}\:\boldsymbol{\mathrm{x}}\:}\boldsymbol{\mathrm{dx}}=? \\ $$

Question Number 44502    Answers: 1   Comments: 0

If a>b,and c>d,prove that a−c may be greater than, equal to or less than b−d.

$$\mathrm{If}\:\mathrm{a}>\mathrm{b},\mathrm{and}\:\mathrm{c}>\mathrm{d},\mathrm{prove}\:\mathrm{that}\:\mathrm{a}−\mathrm{c}\:\mathrm{may}\:\mathrm{be}\:\mathrm{greater}\:\mathrm{than}, \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{or}\:\mathrm{less}\:\mathrm{than}\:\mathrm{b}−\mathrm{d}. \\ $$$$ \\ $$

Question Number 44498    Answers: 0   Comments: 2

Question Number 44497    Answers: 0   Comments: 8

Question Number 44480    Answers: 2   Comments: 0

prove that ((9π)/(8 ))−(9/4)sin^(−1) (1/3)=(9/4)sin^(−1) ((2(√2))/3)

$${prove}\:{that}\:\:\frac{\mathrm{9}\pi}{\mathrm{8}\:\:}−\frac{\mathrm{9}}{\mathrm{4}}\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{9}}{\mathrm{4}}\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$

Question Number 44479    Answers: 1   Comments: 5

Question Number 44478    Answers: 1   Comments: 0

prove that 2tan^(−1) ((√((a−b)/(a+b ))) tan (θ/2))=cos^(−1) (((b+acosθ)/(a+bcosθ)))

$${prove}\:{that}\:\mathrm{2tan}^{−\mathrm{1}} \left(\sqrt{\frac{{a}−{b}}{{a}+{b}\:}}\:\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\right)=\mathrm{cos}^{−\mathrm{1}} \left(\frac{{b}+{acos}\theta}{{a}+{bcos}\theta}\right) \\ $$

Question Number 44491    Answers: 1   Comments: 0

prove that the sum of interior angles of any triangle is 180.

$$\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{interior}}\:\boldsymbol{\mathrm{angles}} \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{any}}\:\boldsymbol{\mathrm{triangle}}\:\boldsymbol{\mathrm{is}}\:\mathrm{180}. \\ $$

Question Number 44476    Answers: 0   Comments: 6

let f(x) =∫_0 ^∞ (dt/(t^2 +2xt−1)) 1)find a explicit form of f(x) 2) cslvulste ∫_0 ^∞ (dt/(t^2 +t−1)) 3)calculate A(θ)=∫_0 ^∞ (dt/(t^2 +2tan(θ)t −1)) 4) calculate g(x)=∫_0 ^∞ ((tdt)/((t^2 +2xt−1)^2 )) 5)find the value of ∫_0 ^∞ ((tdt)/((t^2 +4t−1)^2 ))

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{2}{xt}−\mathrm{1}} \\ $$$$\left.\mathrm{1}\right){find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{cslvulste}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+{t}−\mathrm{1}} \\ $$$$\left.\mathrm{3}\right){calculate}\:{A}\left(\theta\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{2}{tan}\left(\theta\right){t}\:−\mathrm{1}} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{tdt}}{\left({t}^{\mathrm{2}} \:+\mathrm{2}{xt}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{5}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{tdt}}{\left({t}^{\mathrm{2}} \:+\mathrm{4}{t}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 44475    Answers: 0   Comments: 0

find a and b if ∫_0 ^∞ ((√t) +a(√(t+1))+b(√(t+2)))dt converges and give its value in this case.

$${find}\:{a}\:{and}\:{b}\:\:{if}\:\int_{\mathrm{0}} ^{\infty} \:\left(\sqrt{{t}}\:+{a}\sqrt{{t}+\mathrm{1}}+{b}\sqrt{{t}+\mathrm{2}}\right){dt} \\ $$$${converges}\:{and}\:{give}\:{its}\:{value}\:{in}\:{this}\:{case}. \\ $$

  Pg 1629      Pg 1630      Pg 1631      Pg 1632      Pg 1633      Pg 1634      Pg 1635      Pg 1636      Pg 1637      Pg 1638   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com