Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1634
Question Number 44267 Answers: 1 Comments: 0
$${If}\:{x}\epsilon\:\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:,\:\mathrm{1}\right)\:,{differentiate}\:\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right). \\ $$
Question Number 44264 Answers: 1 Comments: 1
$$\int\frac{\mathrm{1}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{5}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 44250 Answers: 1 Comments: 0
$$\mathrm{Evaliate}\:\int\mathrm{sin}^{\mathrm{4}} \mathrm{x}\:\mathrm{dx} \\ $$$$\mathrm{please}\:\mathrm{show}\:\mathrm{working}. \\ $$
Question Number 44236 Answers: 0 Comments: 0
$$\mathrm{in}\:\mathrm{howmanyways}\:\mathrm{can}\:\mathrm{6}\:\mathrm{people}\:\mathrm{sit}\:\mathrm{around}\:\mathrm{a}\:\mathrm{roundtable}? \\ $$$$\mathrm{willbe}\:\mathrm{happy}\:\mathrm{when}\:\mathrm{workings}\:\mathrm{are}\:\mathrm{shown}\:\mathrm{PLEASE}. \\ $$
Question Number 44237 Answers: 2 Comments: 0
$$\mathrm{in}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{6}\:\mathrm{people}\:\mathrm{sit}\:\mathrm{around}\:\mathrm{a}\:\mathrm{roundtable}? \\ $$$$\mathrm{I}\:\mathrm{need}\:\mathrm{workings}\:\mathrm{please}? \\ $$
Question Number 44232 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\pi} \mathrm{e}^{\mathrm{sin}^{\mathrm{2}} \mathrm{x}} \mathrm{Cos}^{\mathrm{3}} \mathrm{xdx} \\ $$
Question Number 44231 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{square}\:\mathrm{root}\:\mathrm{of}\:\:{x}^{{m}^{\mathrm{2}} −{n}^{\mathrm{2}} } \centerdot\:{x}^{{n}^{\mathrm{2}} +\mathrm{2}{mn}} \centerdot\:{x}^{{n}^{\mathrm{2}} } \:\mathrm{is} \\ $$
Question Number 44230 Answers: 1 Comments: 0
Question Number 44222 Answers: 2 Comments: 0
$${A}\:{man}\:{borrowed}\:{x}\:{at}\:\mathrm{5\%}\:{per}\:{annum} \\ $$$${simple}\:{interest}.{He}\:{paid}\:\mathrm{198000}\: \\ $$$${after}\:\mathrm{2}{years}.{Calculate}\:_{} \\ $$$$\left.{a}\right){the}\:{value}\:{of}\:{x} \\ $$$$\left.{b}\right){simple}\:{interest} \\ $$
Question Number 44214 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{x}\:\mathrm{inthe}\:\mathrm{eqn}. \\ $$$$\mathrm{3}^{\mathrm{x}} −\mathrm{1}=\mathrm{x}^{\mathrm{3}} \\ $$
Question Number 44212 Answers: 1 Comments: 0
$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x}\:\mathrm{if}. \\ $$$$\mathrm{3}^{\mathrm{2}} −\mathrm{1}=\mathrm{x}^{\mathrm{3}} \\ $$
Question Number 44209 Answers: 0 Comments: 0
Question Number 44208 Answers: 0 Comments: 3
Question Number 44202 Answers: 1 Comments: 4
$${find}\:\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{3}} \:+{a}^{\mathrm{3}} }\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right){find}\:{g}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{3}} \:+{a}^{\mathrm{3}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{8}{x}^{\mathrm{3}} \:+\mathrm{1}} \\ $$
Question Number 44201 Answers: 1 Comments: 4
$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt}\:\:{with}\:{x}\:\in{R} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+\mathrm{2}{t}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt} \\ $$
Question Number 44200 Answers: 0 Comments: 4
Question Number 44194 Answers: 2 Comments: 3
Question Number 44190 Answers: 1 Comments: 1
$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${Q}..{Find}\:{second}\:{derivative}.. \\ $$$$\:\:\mathrm{5}^{{x}\:\:\:\:} {solve}\:{please}\:{stap}\:{by}\:{stap} \\ $$
Question Number 44179 Answers: 1 Comments: 1
$$\left.\mathrm{1}\right)\:{find}\:\int\:\:\:\frac{{dx}}{\sqrt{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}} \\ $$$$\left.\mathrm{2}\right){calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{dx}}{\sqrt{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} −{x}\:+\mathrm{1}}} \\ $$
Question Number 44178 Answers: 0 Comments: 0
$${find}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sin}^{\mathrm{2}} {t}}{\left({x}^{\mathrm{2}} −\mathrm{2}{x}\:{cost}\:+\mathrm{1}\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sin}^{\mathrm{2}} {t}}{\left({x}^{\mathrm{2}} −{cost}\:+\mathrm{1}\right)^{\mathrm{2}} }{dt} \\ $$
Question Number 44176 Answers: 0 Comments: 1
$${find}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \left({t}^{{n}} −\left[{t}\right]\right){e}^{−{nt}} {dt} \\ $$$${and}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$$${n}\:{integr}\:{natural}. \\ $$
Question Number 44175 Answers: 0 Comments: 2
$${find}\:\:{f}\left({a}\right)\:=\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dx}}{{ch}^{\mathrm{2}} {x}\:+{a}\:{sh}^{\mathrm{2}} {x}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{dx}}{{ch}^{\mathrm{2}} {x}+\mathrm{2}{sh}^{\mathrm{2}} {x}} \\ $$
Question Number 44174 Answers: 0 Comments: 0
$${find}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}\:{e}^{{i}\theta} \right)} \\ $$
Question Number 44173 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left(\mathrm{3}+{t}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+{t}}}{dt} \\ $$
Question Number 44161 Answers: 2 Comments: 0
$$\mathrm{LOL}!\:\mathrm{found}\:\mathrm{this}\:\mathrm{on}\:\mathrm{the}\:\mathrm{web}: \\ $$$$\mathrm{1}=\sqrt{\mathrm{1}}=\sqrt{\left(−\mathrm{1}\right)\left(−\mathrm{1}\right)}=\sqrt{−\mathrm{1}}\sqrt{−\mathrm{1}}=\mathrm{i}^{\mathrm{2}} =−\mathrm{1} \\ $$$$\mathrm{each}\:\mathrm{step}\:\mathrm{seems}\:\mathrm{right},\:\mathrm{so}\:\mathrm{where}'\mathrm{s}\:\mathrm{the}\:\mathrm{mistake}? \\ $$
Question Number 44159 Answers: 3 Comments: 0
$${If}\:\mathrm{sin}^{−\mathrm{1}} {x}\:+\:\mathrm{sin}^{−\mathrm{1}} {y}\:+\:\mathrm{sin}^{−\mathrm{1}} \boldsymbol{{z}}\:=\pi\: \\ $$$${prove}\:{that}\:: \\ $$$$\left.{a}\right)\:{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:+\:{y}\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }\:+\boldsymbol{{z}}\sqrt{\mathrm{1}−\boldsymbol{{z}}^{\mathrm{2}} }=\:\mathrm{2}{xy}\boldsymbol{{z}} \\ $$$$\left.{b}\right)\:{x}^{\mathrm{4}} +{y}^{\mathrm{4}} +\boldsymbol{{z}}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{2}} {y}^{\mathrm{2}} \boldsymbol{{z}}^{\mathrm{2}} =\:\mathrm{2}\left({x}^{\mathrm{2}} {y}^{\mathrm{2}} +{y}^{\mathrm{2}} \boldsymbol{{z}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}} \boldsymbol{{x}}^{\mathrm{2}} \right). \\ $$
Pg 1629 Pg 1630 Pg 1631 Pg 1632 Pg 1633 Pg 1634 Pg 1635 Pg 1636 Pg 1637 Pg 1638
Terms of Service
Privacy Policy
Contact: info@tinkutara.com