Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1634

Question Number 38235    Answers: 0   Comments: 4

A man 2m 50cm tall stands a distance of 3m in front of a large vertical plane mirror. i)what is the shortest length of the mirror that will enable the man see himself fully? ii)what is the answer of the above if the man were 5m away?

$${A}\:{man}\:\mathrm{2}{m}\:\mathrm{50}{cm}\:{tall}\:{stands}\:{a} \\ $$$${distance}\:{of}\:\mathrm{3}{m}\:{in}\:{front}\:{of}\:{a}\:{large} \\ $$$${vertical}\:{plane}\:{mirror}. \\ $$$$\left.{i}\right){what}\:{is}\:{the}\:{shortest}\:{length}\:{of}\:{the} \\ $$$${mirror}\:{that}\:{will}\:{enable}\:{the}\:{man}\:{see} \\ $$$${himself}\:{fully}? \\ $$$$\left.{ii}\right){what}\:{is}\:{the}\:{answer}\:{of}\:{the}\:{above} \\ $$$${if}\:{the}\:{man}\:{were}\:\mathrm{5}{m}\:{away}? \\ $$

Question Number 38261    Answers: 1   Comments: 0

Question Number 38232    Answers: 4   Comments: 1

Differentiate tan^(−1) ((((√(1+x^2 ))−1)/x)) without using any trigonometric substitution !

$$\mathrm{Differentiate}\: \\ $$$$\mathrm{tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }−\mathrm{1}}{{x}}\right)\:\: \\ $$$${without}\:{using}\:{any}\:{trigonometric}\: \\ $$$${substitution}\:! \\ $$

Question Number 38222    Answers: 0   Comments: 1

If U={−5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5} A={x/x^2 =25, x ∈ Z} B={x/x^2 +5=9, x ∈ Z} and C={x/−2≤ x ≤ 2, x ∈ Z} then (A ∩ B ∩ C)^c ∩ (A△B)^c =?

$$\mathrm{If}\:\mathbb{U}=\left\{−\mathrm{5},\:−\mathrm{4},\:−\mathrm{3},\:−\mathrm{2},\:−\mathrm{1},\:\mathrm{0},\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4},\:\mathrm{5}\right\} \\ $$$$\mathrm{A}=\left\{{x}/{x}^{\mathrm{2}} =\mathrm{25},\:{x}\:\in\:\mathrm{Z}\right\} \\ $$$$\mathrm{B}=\left\{{x}/{x}^{\mathrm{2}} +\mathrm{5}=\mathrm{9},\:{x}\:\in\:\mathrm{Z}\right\}\:\mathrm{and} \\ $$$$\mathrm{C}=\left\{{x}/−\mathrm{2}\leqslant\:{x}\:\leqslant\:\mathrm{2},\:{x}\:\in\:\mathrm{Z}\right\}\:\mathrm{then} \\ $$$$\left(\mathrm{A}\:\cap\:\mathrm{B}\:\cap\:\mathrm{C}\right)^{\mathrm{c}} \:\cap\:\left(\mathrm{A}\bigtriangleup\mathrm{B}\right)^{\mathrm{c}} =? \\ $$

Question Number 38211    Answers: 0   Comments: 2

let x>0 and F(x)= ∫_0 ^(+∞) ((arctan(xt^2 ))/(1+t^2 ))dt 1) find a simple form of F(x) 2)find the value of ∫_0 ^∞ ((arctan(2t^2 ))/(1+t^2 ))dt 3)find the value of ∫_0 ^∞ ((arctan(3t^2 ))/(1+t^2 ))dt.

$${let}\:{x}>\mathrm{0}\:{and}\:{F}\left({x}\right)=\:\int_{\mathrm{0}} ^{+\infty} \:\frac{{arctan}\left({xt}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{F}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left(\mathrm{2}{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \frac{{arctan}\left(\mathrm{3}{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}. \\ $$

Question Number 38210    Answers: 2   Comments: 4

let f(a)= ∫_0 ^π (dθ/(a +sin^2 θ)) (a from R) 1) find f(a) 2)calculate g(a)= ∫_0 ^π (dθ/((a+sin^2 θ)^2 )) 3)calculate ∫_0 ^π (dθ/(1+sin^2 θ)) and ∫_0 ^π (dθ/(2+sin^2 θ)) 4) calculate ∫_0 ^π (dθ/((3 +sin^2 θ)^2 )) .

$${let}\:{f}\left({a}\right)=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{d}\theta}{{a}\:+{sin}^{\mathrm{2}} \theta}\:\:\:\left({a}\:{from}\:{R}\right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:{g}\left({a}\right)=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{d}\theta}{\left({a}+{sin}^{\mathrm{2}} \theta\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{d}\theta}{\mathrm{1}+{sin}^{\mathrm{2}} \theta}\:{and}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{d}\theta}{\mathrm{2}+{sin}^{\mathrm{2}} \theta} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{d}\theta}{\left(\mathrm{3}\:+{sin}^{\mathrm{2}} \theta\right)^{\mathrm{2}} }\:. \\ $$

Question Number 38209    Answers: 0   Comments: 2

let f(x)=e^(−x) cosx developp f at fourier serie 1) find the value of Σ_(n=−∞) ^(+∞) (((−1)^n )/(1+n^2 )) 2) calculate Σ_(n=0) ^∞ (1/(n^2 +1)) .

$${let}\:{f}\left({x}\right)={e}^{−{x}} {cosx} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\sum_{{n}=−\infty} ^{+\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{1}+{n}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:+\mathrm{1}}\:. \\ $$

Question Number 38208    Answers: 0   Comments: 3

let f(x)=ch(αx) developp f at fourier serie. (f 2π periodic even)

$${let}\:{f}\left({x}\right)={ch}\left(\alpha{x}\right)\: \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}. \\ $$$$\left({f}\:\mathrm{2}\pi\:{periodic}\:{even}\right) \\ $$

Question Number 38207    Answers: 0   Comments: 1

prove that coth(x)−(1/x) =Σ_(n=1) ^∞ ((2x)/(x^2 +n^2 π^2 )) (x≠0)

$${prove}\:{that}\:{coth}\left({x}\right)−\frac{\mathrm{1}}{{x}}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} \:+{n}^{\mathrm{2}} \pi^{\mathrm{2}} } \\ $$$$\left({x}\neq\mathrm{0}\right) \\ $$

Question Number 38206    Answers: 1   Comments: 1

calculate lim_(x→0) ((x coth(x)−1)/x^2 )

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{x}\:{coth}\left({x}\right)−\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$

Question Number 38205    Answers: 0   Comments: 0

if (1/(sinx)) =Σ_(n=1) ^∞ a_n sin(nx) find the values of a_n .

$${if}\:\:\frac{\mathrm{1}}{{sinx}}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:{a}_{{n}} {sin}\left({nx}\right)\:\:{find}\:{the}\:{values}\:{of} \\ $$$${a}_{{n}} . \\ $$

Question Number 38204    Answers: 0   Comments: 1

if (1/(cosx)) =(a_0 /2) +Σ_(n=1) ^∞ a_n cos(nx) calculate a_0 and a_n

$${if}\:\:\frac{\mathrm{1}}{{cosx}}\:=\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:{a}_{{n}} {cos}\left({nx}\right) \\ $$$${calculate}\:{a}_{\mathrm{0}} \:{and}\:{a}_{{n}} \\ $$

Question Number 38203    Answers: 0   Comments: 0

let x≠(π/2)+kπ,k∈Z.prove that (1/(2cosx)) =Σ_(n=0) ^∞ (−1)^n (cos(2n+1)x)

$${let}\:{x}\neq\frac{\pi}{\mathrm{2}}+{k}\pi,{k}\in{Z}.{prove}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{cosx}}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \left({cos}\left(\mathrm{2}{n}+\mathrm{1}\right){x}\right) \\ $$

Question Number 38202    Answers: 0   Comments: 1

find the value of ∫_0 ^1 e^(−x) (√(1−e^(−2x) ))dx

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{x}} \sqrt{\mathrm{1}−{e}^{−\mathrm{2}{x}} }{dx} \\ $$

Question Number 38201    Answers: 0   Comments: 0

calculate I = ∫_0 ^∞ xe^(−x^2 ) (√(1−e^(−2x^2 ) ))dx

$${calculate}\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:{xe}^{−{x}^{\mathrm{2}} } \sqrt{\mathrm{1}−{e}^{−\mathrm{2}{x}^{\mathrm{2}} } }{dx} \\ $$

Question Number 38199    Answers: 1   Comments: 0

calculate ∫_0 ^1 ((√x)/(1+x^2 ))dx .

$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\sqrt{{x}}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:. \\ $$

Question Number 38198    Answers: 0   Comments: 5

we give ∫_0 ^∞ e^(−x) ln(x)dx=−γ 1) calculate f(a)= ∫_0 ^∞ e^(−ax) ln(x)dx with a>0 2) let u_n = ∫_0 ^∞ e^(−nx) ln((x/n))dx find lim_(n→+∞) u_n

$${we}\:{give}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} {ln}\left({x}\right){dx}=−\gamma \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\:{f}\left({a}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{ax}} {ln}\left({x}\right){dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{let}\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{nx}} {ln}\left(\frac{{x}}{{n}}\right){dx}\:\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} \\ $$

Question Number 38197    Answers: 0   Comments: 1

find a simple form of L(e^(−(√x)) ) L is laplace transform

$${find}\:{a}\:{simple}\:{form}\:{of}\:{L}\left({e}^{−\sqrt{{x}}} \right)\:\:{L}\:{is}\:{laplace}\:{transform} \\ $$

Question Number 38195    Answers: 0   Comments: 1

let x≥1 and δ(x)=Σ_(n=1) ^∞ (((−1)^n )/n^x ) 1) calculate δ(x) interms of ξ(x) if x>1 2)find δ(1) 3) find the value of Σ_(n=1) ^∞ (1/((2n+1)^2 )) 4) calculate δ(3) interms of ξ(3).

$${let}\:{x}\geqslant\mathrm{1}\:{and}\:\delta\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{{x}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\delta\left({x}\right)\:{interms}\:{of}\:\xi\left({x}\right)\:{if}\:{x}>\mathrm{1} \\ $$$$\left.\mathrm{2}\right){find}\:\:\delta\left(\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\delta\left(\mathrm{3}\right)\:{interms}\:{of}\:\xi\left(\mathrm{3}\right). \\ $$

Question Number 38190    Answers: 1   Comments: 2

Question Number 38181    Answers: 2   Comments: 3

If y= x^((lnx)^(ln(lnx)) ) then (dy/dx) = ?

$$\mathrm{If}\:\mathrm{y}=\:\:{x}^{\left({lnx}\right)^{{ln}\left({lnx}\right)} } \:{then}\:\frac{{dy}}{{dx}}\:=\:? \\ $$

Question Number 38177    Answers: 0   Comments: 0

Question Number 38155    Answers: 0   Comments: 1

Propanol ,(C_3 H_7 OH) is an alcohol. a) State the functional group in propanol that makes it alcohol. b) Ethanol can be converted to a number of compounds as shown below. Ethene→ Ethane ↑ Ethylethanoate ⇆ Ethanol → Ethanoic acid ↓ soduimethanoate. when Soduim hydroxide solution reacts with Ethylethanoate ,Sodium Ethanoate and other products are obtained Give the name of the other products

$${Propanol}\:,\left({C}_{\mathrm{3}} {H}_{\mathrm{7}} {OH}\right)\:{is}\:{an}\:{alcohol}. \\ $$$$\left.{a}\right)\:{State}\:{the}\:{functional}\:{group}\:{in}\: \\ $$$${propanol}\:{that}\:{makes}\:{it}\:{alcohol}. \\ $$$$\left.{b}\right)\:{Ethanol}\:{can}\:{be}\:{converted}\:{to}\:{a}\:{number} \\ $$$${of}\:{compounds}\:{as}\:{shown}\:{below}. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Ethene}\rightarrow\:{Ethane} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\uparrow\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Ethylethanoate}\:\:\:\:\:\:\leftrightarrows\:\:\:{Ethanol}\:\rightarrow\:{Ethanoic}\:{acid} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\downarrow \\ $$$$\:\:\:\:\:\:\:\:\:\:{soduimethanoate}. \\ $$$${when}\:{Soduim}\:{hydroxide}\:{solution} \\ $$$${reacts}\:{with}\:{Ethylethanoate}\:,{Sodium} \\ $$$${Ethanoate}\:{and}\:{other}\:{products}\:{are}\:{obtained} \\ $$$${Give}\:{the}\:{name}\:{of}\:{the}\:{other}\:{products} \\ $$$$ \\ $$

Question Number 38154    Answers: 1   Comments: 0

Given that a,b,c are 3 consecutive term of a Geometric sequence f(n) , show that log a,logb,logc are the first 3 terms of an Arithmetic SequenceP(n).

$${Given}\:{that}\: \\ $$$$\:\:{a},{b},{c}\:{are}\:\mathrm{3}\:{consecutive}\:{term}\:{of}\: \\ $$$${a}\:{Geometric}\:{sequence}\:{f}\left({n}\right)\:,\:{show} \\ $$$${that}\:{log}\:{a},{logb},{logc}\:{are}\:{the}\:{first}\: \\ $$$$\mathrm{3}\:{terms}\:{of}\:{an}\:{Arithmetic}\:{SequenceP}\left({n}\right). \\ $$

Question Number 38151    Answers: 3   Comments: 8

a > b > 0 a^2 cos θ−b^2 sin θ=(a^2 −b^2 )sin θcos θ Find θ in terms of a, b. θ ∈ (0,(π/2)) .

$${a}\:>\:{b}\:>\:\mathrm{0} \\ $$$${a}^{\mathrm{2}} \mathrm{cos}\:\theta−{b}^{\mathrm{2}} \mathrm{sin}\:\theta=\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\mathrm{sin}\:\theta\mathrm{cos}\:\theta \\ $$$${Find}\:\theta\:{in}\:{terms}\:{of}\:{a},\:{b}. \\ $$$$\:\:\theta\:\in\:\left(\mathrm{0},\frac{\pi}{\mathrm{2}}\right)\:. \\ $$

Question Number 38130    Answers: 4   Comments: 0

1. ∫tan^3 (2x)sec^5 (2x) dx 2. ∫_0 ^(π/3) tan^5 (x)sec^6 (x) dx 3. ∫tan^6 (ay) dy

$$\mathrm{1}.\:\int\mathrm{tan}^{\mathrm{3}} \left(\mathrm{2}{x}\right)\mathrm{sec}^{\mathrm{5}} \left(\mathrm{2}{x}\right)\:{dx}\: \\ $$$$\mathrm{2}.\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \mathrm{tan}^{\mathrm{5}} \left({x}\right)\mathrm{sec}^{\mathrm{6}} \left({x}\right)\:{dx}\: \\ $$$$\mathrm{3}.\:\int\mathrm{tan}^{\mathrm{6}} \left({ay}\right)\:{dy}\: \\ $$

  Pg 1629      Pg 1630      Pg 1631      Pg 1632      Pg 1633      Pg 1634      Pg 1635      Pg 1636      Pg 1637      Pg 1638   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com