Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1633

Question Number 44397    Answers: 2   Comments: 4

If x is nearly equal to 1 then ((mx^m −nx^n )/(m−n))=

$${If}\:{x}\:{is}\:{nearly}\:{equal}\:{to}\:\mathrm{1}\:{then} \\ $$$$\frac{{mx}^{{m}} −{nx}^{{n}} }{{m}−{n}}= \\ $$

Question Number 44395    Answers: 1   Comments: 3

Question Number 44389    Answers: 0   Comments: 0

Given 2 events A and B such that P(A)=(1/3) , P(A∪B)=(3/4) then find range of P(B)?

$${Given}\:\mathrm{2}\:{events}\:{A}\:{and}\:{B}\:{such}\:{that} \\ $$$${P}\left({A}\right)=\frac{\mathrm{1}}{\mathrm{3}}\:,\:{P}\left({A}\cup{B}\right)=\frac{\mathrm{3}}{\mathrm{4}}\:{then} \\ $$$${find}\:{range}\:{of}\:{P}\left({B}\right)? \\ $$

Question Number 44387    Answers: 0   Comments: 0

Question Number 44384    Answers: 2   Comments: 6

Let a and b are real numbers such that a > b > 0 Find the minimum value of (√2)a^3 + (3/(ab − b^2 ))

$$\mathrm{Let}\:{a}\:\mathrm{and}\:{b}\:\mathrm{are}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{such}\:\mathrm{that} \\ $$$${a}\:>\:{b}\:>\:\mathrm{0} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\sqrt{\mathrm{2}}{a}^{\mathrm{3}} \:+\:\frac{\mathrm{3}}{{ab}\:−\:{b}^{\mathrm{2}} } \\ $$

Question Number 44374    Answers: 1   Comments: 0

Question Number 44373    Answers: 1   Comments: 0

Question Number 44369    Answers: 1   Comments: 1

The domain of f(x)=(√(cos(sinx))) +(1−x)^(−1) + sin^(−1) ((x^2 +1)/(2x)) is.........=.

$${The}\:{domain}\:{of}\: \\ $$$${f}\left({x}\right)=\sqrt{{cos}\left({sinx}\right)}\:+\left(\mathrm{1}−{x}\overset{−\mathrm{1}} {\right)}+\:\mathrm{sin}^{−\mathrm{1}} \frac{{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}{x}} \\ $$$${is}.........=. \\ $$

Question Number 44365    Answers: 2   Comments: 1

Question Number 44356    Answers: 0   Comments: 0

Question Number 44355    Answers: 0   Comments: 0

Question Number 44351    Answers: 1   Comments: 1

If is an even function defined on the interval (−5,5) then a value of x satisfying the equation f(x)=f(((x+1)/(x+2))) is a)((−1+(√5))/2) b)((−3+(√5))/2) c)((−1−(√5))/2) d)((−3−(√5))/2_ )

$${If}\:{is}\:{an}\:{even}\:{function}\:{defined}\:{on} \\ $$$${the}\:{interval}\:\left(−\mathrm{5},\mathrm{5}\right)\:{then}\:{a}\:{value} \\ $$$${of}\:{x}\:{satisfying}\:{the}\:{equation} \\ $$$${f}\left({x}\right)={f}\left(\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}\right)\:{is} \\ $$$$\left.{a}\left.\right)\left.\frac{−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:{b}\right)\frac{−\mathrm{3}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:{c}\right)\frac{−\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\: \\ $$$$\left.{d}\right)\frac{−\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{2}_{} } \\ $$

Question Number 44350    Answers: 0   Comments: 3

If f(x+y)=f(x).f(y) for real x,y and f(0)≠0.Let F(x)=((f(x))/(1+(f(x))^2 )) then F(x) is a)even b)odd c)neither even nor odd

$${If}\:{f}\left({x}+{y}\right)={f}\left({x}\right).{f}\left({y}\right)\:{for}\:{real}\:{x},{y} \\ $$$${and}\:{f}\left(\mathrm{0}\right)\neq\mathrm{0}.{Let}\:{F}\left({x}\right)=\frac{{f}\left({x}\right)}{\mathrm{1}+\left({f}\left({x}\right)\right)^{\mathrm{2}} } \\ $$$${then}\:{F}\left({x}\right)\:{is} \\ $$$$\left.{a}\left.\right)\left.{even}\:{b}\right){odd}\:{c}\right){neither}\:{even}\:{nor}\:{odd} \\ $$

Question Number 44346    Answers: 0   Comments: 0

Question Number 44336    Answers: 0   Comments: 0

Question Number 44334    Answers: 1   Comments: 0

Question Number 44333    Answers: 0   Comments: 2

Can positive integers a, b, c be found such that a^3 + b^3 = c^(3 ) ?

$$\mathrm{Can}\:\mathrm{positive}\:\mathrm{integers}\:\:\mathrm{a},\:\mathrm{b},\:\mathrm{c}\:\:\mathrm{be}\:\mathrm{found}\:\mathrm{such}\:\mathrm{that}\:\:\:\mathrm{a}^{\mathrm{3}} \:+\:\mathrm{b}^{\mathrm{3}} \:=\:\mathrm{c}^{\mathrm{3}\:\:\:} ? \\ $$

Question Number 44325    Answers: 0   Comments: 1

Question Number 44324    Answers: 2   Comments: 0

5 2 a + 3 5 ___ the addition on the left is in base 6.find a. 1001

$$\:\:\:\:\:\:\:\:\:\mathrm{5}\:\mathrm{2}\:{a} \\ $$$$\:\:\:\:+\:\:\:\:\mathrm{3}\:\:\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\_\_\_\:\:\:\:\:{the}\:{addition}\:{on}\:{the}\:{left}\:{is}\:{in}\:{base}\:\mathrm{6}.{find}\:{a}. \\ $$$$\:\:\:\:\:\:\:\:\mathrm{1001} \\ $$

Question Number 44319    Answers: 1   Comments: 2

find lim_(x→0^+ ) ∫_x ^(2x) ((√(1+t^2 ))/t)dt .

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\int_{{x}} ^{\mathrm{2}{x}} \:\frac{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{{t}}{dt}\:. \\ $$

Question Number 44318    Answers: 1   Comments: 2

let f(x)=∫_x ^(+∞) (e^(−t) /t)dt 1)calculate f^′ (x) 2)find a equivalent of f(x) when x→+∞.

$${let}\:{f}\left({x}\right)=\int_{{x}} ^{+\infty} \:\frac{{e}^{−{t}} }{{t}}{dt} \\ $$$$\left.\mathrm{1}\right){calculate}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{a}\:{equivalent}\:{of}\:{f}\left({x}\right)\:{when} \\ $$$${x}\rightarrow+\infty. \\ $$

Question Number 44315    Answers: 1   Comments: 0

If the sum of the coefficients in the expansion of (1+2x)^n is 6561, then the greatest coefficient in the expansion is

$$\mathrm{If}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{coefficients}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}+\mathrm{2}{x}\right)^{{n}} \:\mathrm{is}\:\mathrm{6561},\:\mathrm{then}\:\mathrm{the} \\ $$$$\mathrm{greatest}\:\mathrm{coefficient}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{is} \\ $$

Question Number 44309    Answers: 0   Comments: 2

find the value of I =∫_(−∞) ^(+∞) ((cos(αt))/((x^2 +x +1)^2 ))dx α from R. 2)calculate ∫_(−∞) ^(+∞) (dx/((x^2 +x +1)^2 ))

$${find}\:{the}\:{value}\:{of}\: \\ $$$${I}\:=\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{cos}\left(\alpha{t}\right)}{\left({x}^{\mathrm{2}} \:+{x}\:+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$\alpha\:{from}\:{R}. \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{x}\:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 44308    Answers: 1   Comments: 2

let I = ∫_0 ^∞ cos^4 t e^(−2t) dt and J=∫_0 ^∞ sin^4 t e^(−2t) dt 1) calculate I +J and I−J 2)find the values of I and J.

$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:{cos}^{\mathrm{4}} {t}\:{e}^{−\mathrm{2}{t}} {dt}\:{and}\:{J}=\int_{\mathrm{0}} ^{\infty} \:{sin}^{\mathrm{4}} {t}\:{e}^{−\mathrm{2}{t}} {dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}\:+{J}\:{and}\:{I}−{J} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{values}\:{of}\:{I}\:{and}\:{J}. \\ $$

Question Number 44307    Answers: 0   Comments: 0

find ∫_0 ^(π/2) cosxln(cosx)dx

$${find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cosxln}\left({cosx}\right){dx} \\ $$

Question Number 44306    Answers: 0   Comments: 2

find ∫ (dt/((t+1)(√t) +t(√(t+1)))) 2) calculate ∫_1 ^3 (dt/((t+1)(√t)+t(√(t+1))))

$${find}\:\int\:\:\frac{{dt}}{\left({t}+\mathrm{1}\right)\sqrt{{t}}\:+{t}\sqrt{{t}+\mathrm{1}}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\frac{{dt}}{\left({t}+\mathrm{1}\right)\sqrt{{t}}+{t}\sqrt{{t}+\mathrm{1}}} \\ $$

  Pg 1628      Pg 1629      Pg 1630      Pg 1631      Pg 1632      Pg 1633      Pg 1634      Pg 1635      Pg 1636      Pg 1637   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com