Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1633

Question Number 45771    Answers: 1   Comments: 0

find f(x)=∫_0 ^∞ cos(x+t^2 )dtand g(x)=∫_0 ^∞ sin(x+t^2 )dt 2) find the value of f^′ (x) and g^′ (x).

$${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}+{t}^{\mathrm{2}} \right){dtand}\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{sin}\left({x}+{t}^{\mathrm{2}} \right){dt} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:{f}^{'} \left({x}\right)\:{and}\:{g}^{'} \left({x}\right). \\ $$

Question Number 45785    Answers: 1   Comments: 0

Question Number 45748    Answers: 0   Comments: 1

Question Number 45747    Answers: 1   Comments: 0

Question Number 45746    Answers: 0   Comments: 1

Question Number 45783    Answers: 0   Comments: 1

sec(π/7)=((48−(√(3a)))/(36))

$${sec}\frac{\pi}{\mathrm{7}}=\frac{\mathrm{48}−\sqrt{\mathrm{3}{a}}}{\mathrm{36}} \\ $$

Question Number 45735    Answers: 2   Comments: 1

∫_α ^β (1/((x−α)(β−x)))dx =? β>α

$$\int_{\alpha} ^{\beta} \frac{\mathrm{1}}{\left({x}−\alpha\right)\left(\beta−{x}\right)}{dx}\:\:=?\:\:\:\beta>\alpha \\ $$

Question Number 45730    Answers: 2   Comments: 3

Question Number 45753    Answers: 1   Comments: 0

Question Number 45721    Answers: 0   Comments: 3

Integrate sin (x^2 )dx

$$\:{Integrate}\:\mathrm{sin}\:\left({x}^{\mathrm{2}} \right){dx} \\ $$

Question Number 45719    Answers: 1   Comments: 0

Question Number 45720    Answers: 2   Comments: 5

𝚺_(r = 1) ^n (r + 1)^3

$$\underset{\boldsymbol{\mathrm{r}}\:=\:\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\boldsymbol{\sum}}}\:\:\left(\boldsymbol{\mathrm{r}}\:+\:\mathrm{1}\right)^{\mathrm{3}} \\ $$

Question Number 45712    Answers: 0   Comments: 3

prove that : (√2) is irrationl number

$$\mathrm{prove}\:\mathrm{that}\:: \\ $$$$\sqrt{\mathrm{2}}\:\mathrm{is}\:\mathrm{irrationl}\:\mathrm{number} \\ $$

Question Number 45707    Answers: 0   Comments: 0

Question Number 45706    Answers: 1   Comments: 0

Question Number 45705    Answers: 0   Comments: 3

Question Number 45690    Answers: 1   Comments: 1

Question Number 45688    Answers: 1   Comments: 2

∫(1/(sinxcos^2 x))dx=?

$$\int\frac{\mathrm{1}}{{sinxcos}^{\mathrm{2}} {x}}{dx}=? \\ $$

Question Number 45681    Answers: 1   Comments: 0

Question Number 45673    Answers: 1   Comments: 1

Question Number 45670    Answers: 1   Comments: 1

∫cos^(−1) (sinx)dx=?

$$\int{cos}^{−\mathrm{1}} \left({sinx}\right){dx}=? \\ $$

Question Number 45669    Answers: 2   Comments: 0

∫tan^(−1) (√((1−sinx)/(1+sinx))) dx=?

$$\int{tan}^{−\mathrm{1}} \sqrt{\frac{\mathrm{1}−{sinx}}{\mathrm{1}+{sinx}}}\:{dx}=? \\ $$

Question Number 45654    Answers: 0   Comments: 1

Question Number 45649    Answers: 1   Comments: 1

Let consider A(3,5), B(6,4) and C(3,−2), d : x−5y+7=0 Consider a dot D such as ABCD is a trapezium and (AD) and (BC) are parallel lines. Q1) Give the equation of the line which contains the point D. Q2) Considering that the trapezium should be convex, are all the points D of the lines correct for the Trapezium ? Which ones are ? Give a proof. I have some difficulties to anzwer the question n°2, could someone please, help me. Thank you. H.T.

$$\mathrm{Let}\:\mathrm{consider}\:\mathrm{A}\left(\mathrm{3},\mathrm{5}\right),\:\mathrm{B}\left(\mathrm{6},\mathrm{4}\right)\:\mathrm{and}\:\mathrm{C}\left(\mathrm{3},−\mathrm{2}\right), \\ $$$$\mathrm{d}\::\:{x}−\mathrm{5}{y}+\mathrm{7}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Consider}\:\mathrm{a}\:\mathrm{dot}\:\mathrm{D}\:\mathrm{such}\:\mathrm{as}\:\mathrm{ABCD}\:\mathrm{is}\:\mathrm{a}\:\mathrm{trapezium} \\ $$$$\mathrm{and}\:\left(\mathrm{AD}\right)\:\mathrm{and}\:\left(\mathrm{BC}\right)\:\mathrm{are}\:\mathrm{parallel}\:\mathrm{lines}. \\ $$$$ \\ $$$$\left.\mathrm{Q1}\right)\:\:\:\mathrm{Give}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{line}\:\mathrm{which} \\ $$$$\mathrm{contains}\:\mathrm{the}\:\mathrm{point}\:\mathrm{D}. \\ $$$$ \\ $$$$\left.\mathrm{Q2}\right)\:\:\:\mathrm{Considering}\:\mathrm{that}\:\mathrm{the}\:\mathrm{trapezium} \\ $$$$\mathrm{should}\:\mathrm{be}\:\mathrm{convex},\:\mathrm{are}\:\mathrm{all}\:\mathrm{the}\:\mathrm{points}\:\mathrm{D}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{lines}\:\mathrm{correct}\:\mathrm{for}\:\mathrm{the}\:\mathrm{Trapezium}\:? \\ $$$$\mathrm{Which}\:\mathrm{ones}\:\mathrm{are}\:? \\ $$$$\mathrm{Give}\:\mathrm{a}\:\mathrm{proof}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{have}\:\mathrm{some}\:\mathrm{difficulties}\:\mathrm{to}\:\mathrm{anzwer}\:\mathrm{the} \\ $$$$\mathrm{question}\:\mathrm{n}°\mathrm{2},\:\mathrm{could}\:\mathrm{someone}\:\mathrm{please}, \\ $$$$\mathrm{help}\:\mathrm{me}. \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you}. \\ $$$$ \\ $$$$\mathrm{H}.\mathrm{T}. \\ $$

Question Number 45646    Answers: 0   Comments: 2

According to relativistic theory, E^2 = p^2 c^2 +m_0 ^2 c^4 where m_0 is rest mass. For photon E= pc... (m_0 =0 for photon) For electron E=mc^2 ... Unlike photon ,Why p^2 c^2 is neglected in case of electron ?

$${According}\:{to}\:{relativistic}\:{theory}, \\ $$$${E}^{\mathrm{2}} =\:{p}^{\mathrm{2}} {c}^{\mathrm{2}} +{m}_{\mathrm{0}} ^{\mathrm{2}} {c}^{\mathrm{4}} \:{where}\:{m}_{\mathrm{0}} \:{is}\:{rest}\:{mass}. \\ $$$${For}\:{photon}\:{E}=\:{pc}... \\ $$$$\left({m}_{\mathrm{0}} =\mathrm{0}\:{for}\:{photon}\right) \\ $$$${For}\:{electron}\:{E}={mc}^{\mathrm{2}} ... \\ $$$${Unlike}\:{photon}\:,{Why}\:{p}^{\mathrm{2}} {c}^{\mathrm{2}} \:{is}\:{neglected}\:\: \\ $$$${in}\:{case}\:{of}\:{electron}\:? \\ $$

Question Number 45645    Answers: 1   Comments: 0

  Pg 1628      Pg 1629      Pg 1630      Pg 1631      Pg 1632      Pg 1633      Pg 1634      Pg 1635      Pg 1636      Pg 1637   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com