Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1633

Question Number 38395    Answers: 1   Comments: 1

Find roots of the equation z^2 +2(1+i)z +2=0 leaving your answer in a+ib

$${Find}\:{roots}\:{of}\:{the}\:{equation} \\ $$$${z}^{\mathrm{2}} +\mathrm{2}\left(\mathrm{1}+{i}\right){z}\:+\mathrm{2}=\mathrm{0} \\ $$$${leaving}\:{your}\:{answer}\:{in}\:{a}+{ib} \\ $$

Question Number 38391    Answers: 1   Comments: 0

a+2b+3c=12 2ab+3ac+6bc=48 a+b+c=...

$${a}+\mathrm{2}{b}+\mathrm{3}{c}=\mathrm{12} \\ $$$$\mathrm{2}{ab}+\mathrm{3}{ac}+\mathrm{6}{bc}=\mathrm{48} \\ $$$${a}+{b}+{c}=... \\ $$

Question Number 38420    Answers: 0   Comments: 0

In the figure below,a particle A of mass 2kg is lying on a rough wooden block.The particle A is connected by a light inextensible horizontal string passing over a smooth light fixed pulley at the edge of the block,to a particle B of mass 3kg which hangs freely. The coefficent of friction between the particle A and the surface of the block is μ. Given that the string is taut and the system is released from rest such that the particle move with an acceleration of 4ms^(−1) . Find a) the tension b) the value of μ.

$${In}\:{the}\:{figure}\:{below},{a}\:{particle}\:{A}\:{of} \\ $$$${mass}\:\mathrm{2}{kg}\:{is}\:{lying}\:{on}\:{a}\:{rough}\:{wooden} \\ $$$${block}.{The}\:{particle}\:{A}\:{is}\:{connected}\:{by} \\ $$$${a}\:{light}\:{inextensible}\:{horizontal}\:{string} \\ $$$${passing}\:{over}\:{a}\:{smooth}\:{light}\:{fixed} \\ $$$${pulley}\:{at}\:{the}\:{edge}\:{of}\:{the}\:{block},{to}\:{a} \\ $$$${particle}\:{B}\:{of}\:{mass}\:\mathrm{3}{kg}\:{which}\:{hangs} \\ $$$${freely}.\:{The}\:{coefficent}\:{of}\:{friction} \\ $$$${between}\:{the}\:{particle}\:{A}\:{and}\:{the}\:{surface} \\ $$$${of}\:{the}\:{block}\:{is}\:\mu. \\ $$$${Given}\:{that}\:{the}\:{string}\:{is}\:{taut}\:{and}\:{the}\:{system}\:{is}\:{released}\:{from}\:{rest}\:\:{such}\:{that}\:{the}\:{particle}\:{move}\:{with}\:{an} \\ $$$${acceleration}\:{of}\:\mathrm{4}{ms}^{−\mathrm{1}} .\:{Find} \\ $$$$\left.{a}\right)\:{the}\:{tension} \\ $$$$\left.{b}\right)\:{the}\:{value}\:{of}\:\mu. \\ $$

Question Number 38419    Answers: 1   Comments: 0

Question Number 38384    Answers: 0   Comments: 1

∫x^(−3cosx) dx please is this possible? If possibld then prove it. Thanks in advance.

$$\int{x}^{−\mathrm{3}{cosx}} {dx} \\ $$$$ \\ $$$${please}\:{is}\:{this}\:{possible}? \\ $$$${If}\:{possibld}\:{then}\:{prove}\:{it}. \\ $$$$ \\ $$$${Thanks}\:{in}\:{advance}. \\ $$

Question Number 38376    Answers: 1   Comments: 2

Question Number 38373    Answers: 1   Comments: 7

Question Number 38367    Answers: 2   Comments: 2

If f(x)=x^3 +1 then f^(−1) (x)=?

$${If}\:{f}\left({x}\right)={x}^{\mathrm{3}} +\mathrm{1}\:{then}\:{f}^{−\mathrm{1}} \left({x}\right)=? \\ $$

Question Number 38366    Answers: 1   Comments: 0

At time t,the force acting on a particle P of mass 2kg is (2ti + 4j)N.P is initially at rest at the point with position vector (i + 2j). Find: a) the velocity of P when t = 2. b) the position vector when t = 2.

$${At}\:{time}\:{t},{the}\:{force}\:{acting}\:{on}\:{a}\:{particle} \\ $$$${P}\:{of}\:{mass}\:\mathrm{2}{kg}\:{is}\:\left(\mathrm{2}\boldsymbol{{ti}}\:+\:\mathrm{4}\boldsymbol{{j}}\right){N}.{P} \\ $$$${is}\:{initially}\:{at}\:{rest}\:{at}\:{the}\:{point}\:{with} \\ $$$${position}\:{vector}\:\left(\boldsymbol{{i}}\:+\:\mathrm{2}\boldsymbol{{j}}\right). \\ $$$${Find}: \\ $$$$\left.{a}\right)\:{the}\:{velocity}\:{of}\:{P}\:{when}\:{t}\:=\:\mathrm{2}. \\ $$$$\left.{b}\right)\:{the}\:{position}\:{vector}\:{when}\:{t}\:=\:\mathrm{2}. \\ $$

Question Number 38362    Answers: 0   Comments: 0

Question Number 38365    Answers: 1   Comments: 0

A particle P moves on a straightline from a fixed point O and the distance x from O after t seconds is given as x = (1/(4 )) t^4 − (3/2) t^2 + 2t. Find: a) the velocity of P when t = 2, b) the acceleration of P when t = 2, c) the time at which the speed P is Minimum.

$${A}\:{particle}\:{P}\:{moves}\:{on}\:{a}\:{straightline} \\ $$$${from}\:{a}\:{fixed}\:{point}\:{O}\:{and}\:{the}\:{distance} \\ $$$${x}\:{from}\:{O}\:{after}\:{t}\:{seconds}\:{is}\:{given}\:{as} \\ $$$$\:{x}\:=\:\frac{\mathrm{1}}{\mathrm{4}\:}\:{t}^{\mathrm{4}} \:−\:\frac{\mathrm{3}}{\mathrm{2}}\:{t}^{\mathrm{2}} \:+\:\mathrm{2}{t}. \\ $$$${Find}: \\ $$$$\left.{a}\right)\:{the}\:{velocity}\:{of}\:{P}\:{when}\:{t}\:=\:\mathrm{2}, \\ $$$$\left.{b}\right)\:{the}\:{acceleration}\:{of}\:{P}\:{when}\:{t}\:=\:\mathrm{2}, \\ $$$$\left.{c}\right)\:{the}\:{time}\:{at}\:{which}\:{the}\:{speed}\:{P}\: \\ $$$${is}\:{Minimum}. \\ $$

Question Number 38332    Answers: 1   Comments: 0

((3+(√5))/2) −(√((3+(√5))/2)) = ?!

$$\:\frac{\mathrm{3}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:−\sqrt{\frac{\mathrm{3}+\sqrt{\mathrm{5}}}{\mathrm{2}}}\:=\:?! \\ $$

Question Number 38310    Answers: 1   Comments: 4

let f(x)=∫_0 ^(+∞) ((arctan(xt))/(1+t^2 ))dt with x≥0 1) calculate f^′ (x) then a simple form of f(x) 2) calculate ∫_0 ^(+∞) ((arctant)/(1+t^2 ))dt 3) calculate ∫_0 ^(+∞) ((arctan(2t))/(1+t^2 ))dt

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{arctan}\left({xt}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:\:{with}\:{x}\geqslant\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{'} \left({x}\right)\:{then}\:{a}\:{simple}\:{form}\:{of}\:\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{arctant}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{arctan}\left(\mathrm{2}{t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$

Question Number 38323    Answers: 1   Comments: 1

find Σ_(n=1) ^(+∞) ((4n)/((2n−1)^2 (2n+1)^2 ))

$${find}\:\sum_{{n}=\mathrm{1}} ^{+\infty} \:\:\:\frac{\mathrm{4}{n}}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 38296    Answers: 0   Comments: 7

i have a suggestion pls comment...we are all virtual friends common bond is mathematics so may know each other by posting our self photo...if administator give permission..

$${i}\:{have}\:{a}\:{suggestion}\:{pls}\:{comment}...{we}\:{are}\:{all} \\ $$$${virtual}\:{friends}\:{common}\:{bond}\:{is}\:{mathematics} \\ $$$${so}\:{may}\:{know}\:{each}\:{other}\:{by}\:{posting}\:{our}\:{self} \\ $$$${photo}...{if}\:{administator}\:{give}\:{permission}.. \\ $$

Question Number 38291    Answers: 1   Comments: 0

Question Number 38289    Answers: 1   Comments: 0

Question Number 38288    Answers: 1   Comments: 0

tan α−tan β = 2tan θ asin α−bsin β = lsin θ express sin α, sin β in terms of 𝛉.

$$\mathrm{tan}\:\alpha−\mathrm{tan}\:\beta\:=\:\mathrm{2tan}\:\theta \\ $$$${a}\mathrm{sin}\:\alpha−{b}\mathrm{sin}\:\beta\:=\:{l}\mathrm{sin}\:\theta \\ $$$${express}\:\mathrm{sin}\:\alpha,\:\mathrm{sin}\:\beta\:\:{in}\:{terms}\:{of}\:\boldsymbol{\theta}. \\ $$

Question Number 38286    Answers: 0   Comments: 1

(i) given the function f(t)=e^t and g(t)=lnt show that f○g(t)=g○f(t) (ii)if f(t)=at , g(t)=bt^2 +3 (fog)(2)=35 and (fog)(3)=75 find the value of a and b

$$\left(\boldsymbol{{i}}\right)\:\mathrm{given}\:\mathrm{the}\:\mathrm{function}\:\boldsymbol{{f}}\left(\boldsymbol{{t}}\right)=\boldsymbol{\mathrm{e}}^{\boldsymbol{{t}}} \:\:\boldsymbol{\mathrm{and}}\:\boldsymbol{{g}}\left(\boldsymbol{{t}}\right)=\boldsymbol{\mathrm{ln}{t}} \\ $$$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{{f}}\circ\boldsymbol{{g}}\left(\boldsymbol{{t}}\right)=\boldsymbol{{g}}\circ\boldsymbol{{f}}\left(\boldsymbol{{t}}\right) \\ $$$$\left(\boldsymbol{{ii}}\right)\mathrm{if}\:\boldsymbol{{f}}\left(\boldsymbol{{t}}\right)=\boldsymbol{{at}}\:,\:\boldsymbol{{g}}\left(\boldsymbol{{t}}\right)=\boldsymbol{{bt}}^{\mathrm{2}} +\mathrm{3} \\ $$$$\left(\boldsymbol{{fog}}\right)\left(\mathrm{2}\right)=\mathrm{35}\:\boldsymbol{\mathrm{and}}\:\left(\boldsymbol{{fog}}\right)\left(\mathrm{3}\right)=\mathrm{75} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\boldsymbol{{a}}\:\mathrm{and}\:\boldsymbol{{b}} \\ $$

Question Number 38284    Answers: 1   Comments: 2

Find all the complex number in the rectangular form such that (z−1)^4 =−1

$${Find}\:{all}\:{the}\:{complex}\:{number}\:{in}\:{the} \\ $$$${rectangular}\:{form}\:{such}\:{that} \\ $$$$\left({z}−\mathrm{1}\right)^{\mathrm{4}} =−\mathrm{1} \\ $$$$ \\ $$

Question Number 38282    Answers: 1   Comments: 0

Question Number 38281    Answers: 1   Comments: 0

Question Number 38262    Answers: 1   Comments: 0

Question Number 38252    Answers: 0   Comments: 2

if x^2 + 3xy − y^2 = 3 find (dy/dx) at point (1,1) hence differentiate ((sin x)/(1 + x)) with respect to x.

$${if}\:{x}^{\mathrm{2}} \:+\:\mathrm{3}{xy}\:−\:{y}^{\mathrm{2}} \:=\:\mathrm{3}\:{find}\: \\ $$$$\frac{{dy}}{{dx}}\:{at}\:{point}\:\left(\mathrm{1},\mathrm{1}\right)\:{hence} \\ $$$${differentiate}\:\frac{{sin}\:{x}}{\mathrm{1}\:+\:{x}}\:{with}\:{respect} \\ $$$${to}\:{x}. \\ $$

Question Number 38250    Answers: 0   Comments: 0

It is given that the first term of a GP is the last term of an AP. the second term of the AP is the third term of the GP..detemine the Geometric mean of the GP is the fourth term of the GP is 16.

$$\:\:{It}\:{is}\:{given}\:{that}\:{the}\:{first}\:{term}\:{of} \\ $$$${a}\:{GP}\:\:{is}\:{the}\:{last}\:{term}\:{of}\:{an}\:{AP}. \\ $$$${the}\:{second}\:{term}\:{of}\:{the}\:{AP}\:{is}\:{the} \\ $$$${third}\:{term}\:{of}\:{the}\:{GP}..{detemine} \\ $$$${the}\:{Geometric}\:{mean}\:{of}\:{the}\:{GP}\:{is}\: \\ $$$$\:{the}\:{fourth}\:{term}\:{of}\:{the}\:{GP}\:{is}\:\mathrm{16}. \\ $$

Question Number 38247    Answers: 2   Comments: 2

  Pg 1628      Pg 1629      Pg 1630      Pg 1631      Pg 1632      Pg 1633      Pg 1634      Pg 1635      Pg 1636      Pg 1637   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com