Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1632
Question Number 45646 Answers: 0 Comments: 2
$${According}\:{to}\:{relativistic}\:{theory}, \\ $$$${E}^{\mathrm{2}} =\:{p}^{\mathrm{2}} {c}^{\mathrm{2}} +{m}_{\mathrm{0}} ^{\mathrm{2}} {c}^{\mathrm{4}} \:{where}\:{m}_{\mathrm{0}} \:{is}\:{rest}\:{mass}. \\ $$$${For}\:{photon}\:{E}=\:{pc}... \\ $$$$\left({m}_{\mathrm{0}} =\mathrm{0}\:{for}\:{photon}\right) \\ $$$${For}\:{electron}\:{E}={mc}^{\mathrm{2}} ... \\ $$$${Unlike}\:{photon}\:,{Why}\:{p}^{\mathrm{2}} {c}^{\mathrm{2}} \:{is}\:{neglected}\:\: \\ $$$${in}\:{case}\:{of}\:{electron}\:? \\ $$
Question Number 45645 Answers: 1 Comments: 0
Question Number 45641 Answers: 2 Comments: 1
Question Number 45639 Answers: 3 Comments: 0
Question Number 45638 Answers: 1 Comments: 0
Question Number 45635 Answers: 0 Comments: 2
$$\left.\mathrm{1}\right){find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{xt}^{\mathrm{3}} \right){dt}\:\:{with}\:\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{2}+{t}^{\mathrm{3}} \right){dt}\:. \\ $$
Question Number 45634 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right){find}\:\int\:{ln}\left(\mathrm{1}−{x}^{\mathrm{6}} \right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{x}^{\mathrm{6}} \right){dx} \\ $$
Question Number 45632 Answers: 0 Comments: 2
$$\left.\mathrm{1}\right){find}\:\int\:{ln}\left(\mathrm{1}+{x}^{\mathrm{3}} \right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{x}^{\mathrm{3}} \right){ex} \\ $$
Question Number 45630 Answers: 2 Comments: 0
Question Number 45610 Answers: 0 Comments: 1
Question Number 45609 Answers: 0 Comments: 3
Question Number 45608 Answers: 1 Comments: 0
Question Number 45602 Answers: 2 Comments: 0
Question Number 45601 Answers: 0 Comments: 0
Question Number 45600 Answers: 0 Comments: 2
$${find}\:{f}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({x}+{y}\:{sin}\theta\right){d}\theta\:\:{with}\:\:\mid{y}\mid<\mid{x}\mid \\ $$$$\left.\mathrm{2}\right)\:{find}\:{f}\left(\mathrm{2},\mathrm{3}\right) \\ $$$$\left.\mathrm{3}\right){find}\:{f}\left(\sqrt{\mathrm{2}},\sqrt{\mathrm{3}}\right)\:. \\ $$
Question Number 45599 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{\mathrm{2}{x}+\mathrm{1}−\left[{x}\right]}{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} {A}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{serie}\:\:\Sigma\:{A}_{{n}} \\ $$
Question Number 45598 Answers: 0 Comments: 1
$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\mathrm{2}{n}+\mathrm{1}}{{n}^{\mathrm{2}} \left(\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}\right)} \\ $$
Question Number 45594 Answers: 0 Comments: 1
$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 45592 Answers: 0 Comments: 0
Question Number 45589 Answers: 0 Comments: 0
$$\mathrm{pl}\:\mathrm{help}\:\mathrm{me}\:\mathrm{sir}\:\mathrm{mathtype}\:\mathrm{6c}\:\:\mathrm{seril}\:\mathrm{key} \\ $$
Question Number 45585 Answers: 1 Comments: 6
$$\mathrm{prove}\:\mathrm{that1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} +...+\mathrm{n}^{\mathrm{3}} =\frac{\mathrm{n}^{\mathrm{2}} \left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}\:\mathrm{for}\:\mathrm{every} \\ $$$$\mathrm{natural}\:\mathrm{number}\:\boldsymbol{\mathrm{n}} \\ $$
Question Number 45575 Answers: 2 Comments: 4
Question Number 45565 Answers: 2 Comments: 0
$${If}\:\:\boldsymbol{{ax}}^{\mathrm{2}} +\boldsymbol{{by}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{{hxy}}+\mathrm{2}\boldsymbol{{gx}}+\mathrm{2}\boldsymbol{{fy}}+\boldsymbol{{c}}=\mathrm{0} \\ $$$${be}\:{the}\:{equation}\:{of}\:{an}\:{ellipse},\:{find} \\ $$$${coordinates}\:{of}\:{center}\:{of}\:{ellipse}. \\ $$$${Q}.\mathrm{45506}\:\:\left({another}\:{solution}\right) \\ $$
Question Number 45563 Answers: 0 Comments: 0
Question Number 45561 Answers: 0 Comments: 2
Question Number 45555 Answers: 1 Comments: 1
$${Prove}\:{that}\:{points}\:\left(\mathrm{4},−\mathrm{1},\mathrm{3}\right)\:\&\:\left(\mathrm{5},−\mathrm{1},\mathrm{4}\right) \\ $$$${lies}\:{on}\:{same}\:{side}\:{of}\:{the}\:{plane}\:{x}+{y}+{z}=\mathrm{7}. \\ $$
Pg 1627 Pg 1628 Pg 1629 Pg 1630 Pg 1631 Pg 1632 Pg 1633 Pg 1634 Pg 1635 Pg 1636
Terms of Service
Privacy Policy
Contact: info@tinkutara.com