Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1632

Question Number 44557    Answers: 1   Comments: 2

Question Number 44548    Answers: 0   Comments: 0

(a) The area of a sector of a circle of radius 12cm is 132cm^2 . If the sector is folded such that its straight edges coincide to form a cone. Find the radius of the base of the cone [ Take π = ((22)/7) ] . (b) A circle of centre O has radius 5cm. A chord PQ of the circle is 6cm long. caclculate: (i) The distance of the chord from the centre O (ii) The angle POQ

$$\left(\mathrm{a}\right) \\ $$$$\mathrm{The}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{sector}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{radius}\:\:\mathrm{12cm}\:\mathrm{is}\:\:\mathrm{132cm}^{\mathrm{2}} \:.\:\:\mathrm{If}\:\mathrm{the}\:\mathrm{sector} \\ $$$$\mathrm{is}\:\mathrm{folded}\:\mathrm{such}\:\mathrm{that}\:\mathrm{its}\:\mathrm{straight}\:\mathrm{edges}\:\mathrm{coincide}\:\mathrm{to}\:\mathrm{form}\:\mathrm{a}\:\mathrm{cone}.\:\mathrm{Find}\:\mathrm{the}\: \\ $$$$\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{base}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cone}\:\:\:\:\left[\:\:\mathrm{Take}\:\:\:\:\pi\:\:=\:\:\frac{\mathrm{22}}{\mathrm{7}}\:\right]\:. \\ $$$$ \\ $$$$\left(\mathrm{b}\right)\:\:\: \\ $$$$\mathrm{A}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{centre}\:\mathrm{O}\:\mathrm{has}\:\mathrm{radius}\:\mathrm{5cm}.\:\:\mathrm{A}\:\mathrm{chord}\:\mathrm{PQ}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{is}\:\mathrm{6cm}\:\mathrm{long}. \\ $$$$\mathrm{caclculate}: \\ $$$$\:\:\:\:\left(\mathrm{i}\right)\:\:\:\mathrm{The}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{the}\:\mathrm{chord}\:\mathrm{from}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{O} \\ $$$$\:\:\:\left(\mathrm{ii}\right)\:\:\mathrm{The}\:\mathrm{angle}\:\mathrm{POQ} \\ $$

Question Number 44546    Answers: 1   Comments: 0

$$ \\ $$

Question Number 44543    Answers: 1   Comments: 3

If y =f(x) = ax^2 +bx+c and at some x, say x= p ∫_0 ^( p) ydx = y(p)= y ′(p) = y ′′(p)= p , then find p .

$${If}\:\:{y}\:={f}\left({x}\right)\:=\:{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$${and}\:\:{at}\:{some}\:{x},\:{say}\:\:{x}=\:{p} \\ $$$$\int_{\mathrm{0}} ^{\:\:{p}} {ydx}\:=\:{y}\left({p}\right)=\:{y}\:'\left({p}\right)\:=\:{y}\:''\left({p}\right)=\:{p}\:, \\ $$$${then}\:{find}\:\boldsymbol{{p}}\:. \\ $$

Question Number 44541    Answers: 1   Comments: 1

Find the remainder when the polynomial p(y)=y^4 −3y^2 +2y+1 is divided by y−1.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when}\:\mathrm{the} \\ $$$$\mathrm{polynomial}\:{p}\left({y}\right)={y}^{\mathrm{4}} −\mathrm{3}{y}^{\mathrm{2}} +\mathrm{2}{y}+\mathrm{1}\:\mathrm{is} \\ $$$$\mathrm{divided}\:\mathrm{by}\:{y}−\mathrm{1}. \\ $$

Question Number 44537    Answers: 1   Comments: 0

Question Number 44535    Answers: 0   Comments: 1

Question Number 44527    Answers: 0   Comments: 2

Question Number 44526    Answers: 1   Comments: 1

Find moment of inertia of the area bounded by the curve r^2 =a^2 cos2θ about its axis

$$\mathrm{Find}\:\mathrm{moment}\:\mathrm{of}\:\mathrm{inertia}\:\mathrm{of}\:\mathrm{the}\:\mathrm{area}\:\mathrm{bounded} \\ $$$$\mathrm{by}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{r}^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} \mathrm{cos2}\theta \\ $$$$\mathrm{about}\:\mathrm{its}\:\mathrm{axis} \\ $$

Question Number 44515    Answers: 1   Comments: 0

let g(x) =∫_0 ^∞ ((t ln(t)dt)/((1+xt)^3 )) with x>0 1) give a explicit form of g(x) 2) calculate ∫_0 ^∞ ((t ln(t))/((1+t)^3 ))dt 3) calculate ∫_0 ^∞ ((tln(t))/((1+2t)^3 )) dt 4) calculate A(θ) =∫_0 ^∞ ((t ln(t))/((1+t sinθ)^3 ))dt with 0<θ<(π/2)

$${let}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}\:{ln}\left({t}\right){dt}}{\left(\mathrm{1}+{xt}\right)^{\mathrm{3}} }\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{give}\:{a}\:{explicit}\:{form}\:{of}\:{g}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}\:{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{3}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{tln}\left({t}\right)}{\left(\mathrm{1}+\mathrm{2}{t}\right)^{\mathrm{3}} }\:{dt} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{A}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}\:{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\:{sin}\theta\right)^{\mathrm{3}} }{dt}\:\:{with}\:\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$

Question Number 44512    Answers: 1   Comments: 1

prove that:−∫2^(ln x) dx = ((x.2^(ln x) )/(ln(xe))) +C

$$\boldsymbol{{prove}}\:\boldsymbol{{that}}:−\int\mathrm{2}^{\boldsymbol{\mathrm{ln}}\:\boldsymbol{\mathrm{x}}} \:\boldsymbol{\mathrm{dx}}\:=\:\frac{\boldsymbol{\mathrm{x}}.\mathrm{2}^{\boldsymbol{\mathrm{ln}}\:\boldsymbol{\mathrm{x}}} }{\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{xe}}\right)}\:+\boldsymbol{\mathrm{C}} \\ $$$$ \\ $$

Question Number 44509    Answers: 1   Comments: 1

∫(√(tan x)) dx=?

$$\int\sqrt{\boldsymbol{\mathrm{tan}}\:\boldsymbol{\mathrm{x}}}\:\:\boldsymbol{\mathrm{dx}}=? \\ $$

Question Number 44508    Answers: 1   Comments: 1

∫(√(sin x ))dx=?

$$\int\sqrt{\boldsymbol{\mathrm{sin}}\:\boldsymbol{\mathrm{x}}\:}\boldsymbol{\mathrm{dx}}=? \\ $$

Question Number 44502    Answers: 1   Comments: 0

If a>b,and c>d,prove that a−c may be greater than, equal to or less than b−d.

$$\mathrm{If}\:\mathrm{a}>\mathrm{b},\mathrm{and}\:\mathrm{c}>\mathrm{d},\mathrm{prove}\:\mathrm{that}\:\mathrm{a}−\mathrm{c}\:\mathrm{may}\:\mathrm{be}\:\mathrm{greater}\:\mathrm{than}, \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{or}\:\mathrm{less}\:\mathrm{than}\:\mathrm{b}−\mathrm{d}. \\ $$$$ \\ $$

Question Number 44498    Answers: 0   Comments: 2

Question Number 44497    Answers: 0   Comments: 8

Question Number 44480    Answers: 2   Comments: 0

prove that ((9π)/(8 ))−(9/4)sin^(−1) (1/3)=(9/4)sin^(−1) ((2(√2))/3)

$${prove}\:{that}\:\:\frac{\mathrm{9}\pi}{\mathrm{8}\:\:}−\frac{\mathrm{9}}{\mathrm{4}}\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{9}}{\mathrm{4}}\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$

Question Number 44479    Answers: 1   Comments: 5

Question Number 44478    Answers: 1   Comments: 0

prove that 2tan^(−1) ((√((a−b)/(a+b ))) tan (θ/2))=cos^(−1) (((b+acosθ)/(a+bcosθ)))

$${prove}\:{that}\:\mathrm{2tan}^{−\mathrm{1}} \left(\sqrt{\frac{{a}−{b}}{{a}+{b}\:}}\:\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\right)=\mathrm{cos}^{−\mathrm{1}} \left(\frac{{b}+{acos}\theta}{{a}+{bcos}\theta}\right) \\ $$

Question Number 44491    Answers: 1   Comments: 0

prove that the sum of interior angles of any triangle is 180.

$$\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{interior}}\:\boldsymbol{\mathrm{angles}} \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{any}}\:\boldsymbol{\mathrm{triangle}}\:\boldsymbol{\mathrm{is}}\:\mathrm{180}. \\ $$

Question Number 44476    Answers: 0   Comments: 6

let f(x) =∫_0 ^∞ (dt/(t^2 +2xt−1)) 1)find a explicit form of f(x) 2) cslvulste ∫_0 ^∞ (dt/(t^2 +t−1)) 3)calculate A(θ)=∫_0 ^∞ (dt/(t^2 +2tan(θ)t −1)) 4) calculate g(x)=∫_0 ^∞ ((tdt)/((t^2 +2xt−1)^2 )) 5)find the value of ∫_0 ^∞ ((tdt)/((t^2 +4t−1)^2 ))

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{2}{xt}−\mathrm{1}} \\ $$$$\left.\mathrm{1}\right){find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{cslvulste}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+{t}−\mathrm{1}} \\ $$$$\left.\mathrm{3}\right){calculate}\:{A}\left(\theta\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{2}{tan}\left(\theta\right){t}\:−\mathrm{1}} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{tdt}}{\left({t}^{\mathrm{2}} \:+\mathrm{2}{xt}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{5}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{tdt}}{\left({t}^{\mathrm{2}} \:+\mathrm{4}{t}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 44475    Answers: 0   Comments: 0

find a and b if ∫_0 ^∞ ((√t) +a(√(t+1))+b(√(t+2)))dt converges and give its value in this case.

$${find}\:{a}\:{and}\:{b}\:\:{if}\:\int_{\mathrm{0}} ^{\infty} \:\left(\sqrt{{t}}\:+{a}\sqrt{{t}+\mathrm{1}}+{b}\sqrt{{t}+\mathrm{2}}\right){dt} \\ $$$${converges}\:{and}\:{give}\:{its}\:{value}\:{in}\:{this}\:{case}. \\ $$

Question Number 44473    Answers: 0   Comments: 1

let A_n =∫_0 ^∞ sin(n[t])e^(−t) dt 2)calculate A_n and lim_(n→+∞) n A_n 3)study the convergence of Σ_n A_n

$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{sin}\left({n}\left[{t}\right]\right){e}^{−{t}} {dt} \\ $$$$\left.\mathrm{2}\right){calculate}\:{A}_{{n}} \:\:{and}\:{lim}_{{n}\rightarrow+\infty} {n}\:{A}_{{n}} \\ $$$$\left.\mathrm{3}\right){study}\:{the}\:{convergence}\:{of}\:\sum_{{n}} \:{A}_{{n}} \\ $$

Question Number 44472    Answers: 0   Comments: 1

find f(x)=∫_0 ^∞ ((ln(t)dt)/((1+xt)^2 )) withx>0

$${find}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({t}\right){dt}}{\left(\mathrm{1}+{xt}\right)^{\mathrm{2}} }\:{withx}>\mathrm{0} \\ $$

Question Number 44471    Answers: 0   Comments: 2

calculste ∫_0 ^∞ ((ln(x))/((1+x)^2 ))dx

$${calculste}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 44470    Answers: 0   Comments: 0

find ∫_0 ^∞ (dt/(1+t^2 sin^2 t))

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} {sin}^{\mathrm{2}} {t}} \\ $$

  Pg 1627      Pg 1628      Pg 1629      Pg 1630      Pg 1631      Pg 1632      Pg 1633      Pg 1634      Pg 1635      Pg 1636   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com