Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1632

Question Number 45646    Answers: 0   Comments: 2

According to relativistic theory, E^2 = p^2 c^2 +m_0 ^2 c^4 where m_0 is rest mass. For photon E= pc... (m_0 =0 for photon) For electron E=mc^2 ... Unlike photon ,Why p^2 c^2 is neglected in case of electron ?

$${According}\:{to}\:{relativistic}\:{theory}, \\ $$$${E}^{\mathrm{2}} =\:{p}^{\mathrm{2}} {c}^{\mathrm{2}} +{m}_{\mathrm{0}} ^{\mathrm{2}} {c}^{\mathrm{4}} \:{where}\:{m}_{\mathrm{0}} \:{is}\:{rest}\:{mass}. \\ $$$${For}\:{photon}\:{E}=\:{pc}... \\ $$$$\left({m}_{\mathrm{0}} =\mathrm{0}\:{for}\:{photon}\right) \\ $$$${For}\:{electron}\:{E}={mc}^{\mathrm{2}} ... \\ $$$${Unlike}\:{photon}\:,{Why}\:{p}^{\mathrm{2}} {c}^{\mathrm{2}} \:{is}\:{neglected}\:\: \\ $$$${in}\:{case}\:{of}\:{electron}\:? \\ $$

Question Number 45645    Answers: 1   Comments: 0

Question Number 45641    Answers: 2   Comments: 1

Question Number 45639    Answers: 3   Comments: 0

Question Number 45638    Answers: 1   Comments: 0

Question Number 45635    Answers: 0   Comments: 2

1)find f(x)=∫_0 ^1 ln(1+xt^3 )dt with ∣x∣<1 2) calculate ∫_0 ^1 ln(2+t^3 )dt .

$$\left.\mathrm{1}\right){find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{xt}^{\mathrm{3}} \right){dt}\:\:{with}\:\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{2}+{t}^{\mathrm{3}} \right){dt}\:. \\ $$

Question Number 45634    Answers: 0   Comments: 0

1)find ∫ ln(1−x^6 )dx 2) calculate ∫_0 ^1 ln(1−x^6 )dx

$$\left.\mathrm{1}\right){find}\:\int\:{ln}\left(\mathrm{1}−{x}^{\mathrm{6}} \right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{x}^{\mathrm{6}} \right){dx} \\ $$

Question Number 45632    Answers: 0   Comments: 2

1)find ∫ ln(1+x^3 )dx 2) calculate ∫_0 ^1 ln(1+x^3 )ex

$$\left.\mathrm{1}\right){find}\:\int\:{ln}\left(\mathrm{1}+{x}^{\mathrm{3}} \right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{x}^{\mathrm{3}} \right){ex} \\ $$

Question Number 45630    Answers: 2   Comments: 0

Question Number 45610    Answers: 0   Comments: 1

Question Number 45609    Answers: 0   Comments: 3

Question Number 45608    Answers: 1   Comments: 0

Question Number 45602    Answers: 2   Comments: 0

Question Number 45601    Answers: 0   Comments: 0

Question Number 45600    Answers: 0   Comments: 2

find f(x,y) =∫_0 ^(π/2) ln(x+y sinθ)dθ with ∣y∣<∣x∣ 2) find f(2,3) 3)find f((√2),(√3)) .

$${find}\:{f}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({x}+{y}\:{sin}\theta\right){d}\theta\:\:{with}\:\:\mid{y}\mid<\mid{x}\mid \\ $$$$\left.\mathrm{2}\right)\:{find}\:{f}\left(\mathrm{2},\mathrm{3}\right) \\ $$$$\left.\mathrm{3}\right){find}\:{f}\left(\sqrt{\mathrm{2}},\sqrt{\mathrm{3}}\right)\:. \\ $$

Question Number 45599    Answers: 0   Comments: 1

1) calculate A_n = ∫_0 ^n (((−1)^([x]) )/(2x+1−[x]))dx 2) find lim_(n→+∞) A_n 3) study the serie Σ A_n

$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{\mathrm{2}{x}+\mathrm{1}−\left[{x}\right]}{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} {A}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{serie}\:\:\Sigma\:{A}_{{n}} \\ $$

Question Number 45598    Answers: 0   Comments: 1

calculate Σ_(n=1) ^∞ ((2n+1)/(n^2 (4n^2 −1)))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\mathrm{2}{n}+\mathrm{1}}{{n}^{\mathrm{2}} \left(\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}\right)} \\ $$

Question Number 45594    Answers: 0   Comments: 1

calculate Σ_(n=1) ^∞ (1/((4n^2 −1)^2 ))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 45592    Answers: 0   Comments: 0

Question Number 45589    Answers: 0   Comments: 0

pl help me sir mathtype 6c seril key

$$\mathrm{pl}\:\mathrm{help}\:\mathrm{me}\:\mathrm{sir}\:\mathrm{mathtype}\:\mathrm{6c}\:\:\mathrm{seril}\:\mathrm{key} \\ $$

Question Number 45585    Answers: 1   Comments: 6

prove that1^3 +2^3 +3^3 +...+n^3 =((n^2 (n+1)^2 )/4) for every natural number n

$$\mathrm{prove}\:\mathrm{that1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} +...+\mathrm{n}^{\mathrm{3}} =\frac{\mathrm{n}^{\mathrm{2}} \left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}\:\mathrm{for}\:\mathrm{every} \\ $$$$\mathrm{natural}\:\mathrm{number}\:\boldsymbol{\mathrm{n}} \\ $$

Question Number 45575    Answers: 2   Comments: 4

Question Number 45565    Answers: 2   Comments: 0

If ax^2 +by^2 +2hxy+2gx+2fy+c=0 be the equation of an ellipse, find coordinates of center of ellipse. Q.45506 (another solution)

$${If}\:\:\boldsymbol{{ax}}^{\mathrm{2}} +\boldsymbol{{by}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{{hxy}}+\mathrm{2}\boldsymbol{{gx}}+\mathrm{2}\boldsymbol{{fy}}+\boldsymbol{{c}}=\mathrm{0} \\ $$$${be}\:{the}\:{equation}\:{of}\:{an}\:{ellipse},\:{find} \\ $$$${coordinates}\:{of}\:{center}\:{of}\:{ellipse}. \\ $$$${Q}.\mathrm{45506}\:\:\left({another}\:{solution}\right) \\ $$

Question Number 45563    Answers: 0   Comments: 0

Question Number 45561    Answers: 0   Comments: 2

Question Number 45555    Answers: 1   Comments: 1

Prove that points (4,−1,3) & (5,−1,4) lies on same side of the plane x+y+z=7.

$${Prove}\:{that}\:{points}\:\left(\mathrm{4},−\mathrm{1},\mathrm{3}\right)\:\&\:\left(\mathrm{5},−\mathrm{1},\mathrm{4}\right) \\ $$$${lies}\:{on}\:{same}\:{side}\:{of}\:{the}\:{plane}\:{x}+{y}+{z}=\mathrm{7}. \\ $$

  Pg 1627      Pg 1628      Pg 1629      Pg 1630      Pg 1631      Pg 1632      Pg 1633      Pg 1634      Pg 1635      Pg 1636   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com