Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1632

Question Number 46101    Answers: 1   Comments: 0

I=∫(x^(n+1) /(√(1+x^n )))dx=?

$$\mathrm{I}=\int\frac{\mathrm{x}^{\mathrm{n}+\mathrm{1}} }{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{n}} }}\mathrm{dx}=? \\ $$

Question Number 46095    Answers: 1   Comments: 0

Question Number 46091    Answers: 1   Comments: 1

Question Number 46088    Answers: 1   Comments: 0

Question Number 46087    Answers: 1   Comments: 0

please help me!! calculate: I=∫_2 ^(1+e^2 ) ((12288ln(x−1))/([ln^(12) (x−1)+4096](x−1)))dx thanks!!!

$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}!! \\ $$$$\mathrm{calculate}: \\ $$$$\mathrm{I}=\underset{\mathrm{2}} {\overset{\mathrm{1}+\mathrm{e}^{\mathrm{2}} } {\int}}\frac{\mathrm{12288ln}\left(\mathrm{x}−\mathrm{1}\right)}{\left[\mathrm{ln}^{\mathrm{12}} \left(\mathrm{x}−\mathrm{1}\right)+\mathrm{4096}\right]\left(\mathrm{x}−\mathrm{1}\right)}\mathrm{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{thanks}!!! \\ $$

Question Number 46085    Answers: 1   Comments: 2

Question Number 46084    Answers: 1   Comments: 1

Question Number 46083    Answers: 1   Comments: 0

Question Number 46060    Answers: 1   Comments: 0

determine whether or not lim_(x→0) [ is continuous

$${determine}\:{whether}\:{or}\:{not}\:\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\:\:\:\:\:\right. \\ $$$${is}\:{continuous} \\ $$

Question Number 46045    Answers: 1   Comments: 0

A number is said to be ′′right prime′′ if despite dropping the left most digits successively, Number continues to be a prime number. For example: 223 is a right prime because despite dropping 2 from left most part, we obtain 23 as the prime number. Next, even after dropping 2 from left, 3 is a prime. How many two digit numbers are right prime ?

$$\mathrm{A}\:\mathrm{number}\:\mathrm{is}\:\mathrm{said}\:\mathrm{to}\:\mathrm{be}\:''\mathrm{right}\:\mathrm{prime}''\:\mathrm{if}\:\mathrm{despite}\:\mathrm{dropping}\:\mathrm{the}\:\mathrm{left}\:\mathrm{most} \\ $$$$\mathrm{digits}\:\mathrm{successively},\:\:\mathrm{Number}\:\mathrm{continues}\:\mathrm{to}\:\mathrm{be}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number}.\:\: \\ $$$$\mathrm{For}\:\mathrm{example}:\:\:\mathrm{223}\:\mathrm{is}\:\mathrm{a}\:\mathrm{right}\:\mathrm{prime}\:\mathrm{because}\:\mathrm{despite}\:\mathrm{dropping}\:\mathrm{2}\:\mathrm{from}\:\mathrm{left} \\ $$$$\mathrm{most}\:\mathrm{part},\:\mathrm{we}\:\mathrm{obtain}\:\:\mathrm{23}\:\mathrm{as}\:\mathrm{the}\:\mathrm{prime}\:\mathrm{number}.\:\mathrm{Next},\:\mathrm{even}\:\mathrm{after}\:\mathrm{dropping}\: \\ $$$$\mathrm{2}\:\mathrm{from}\:\mathrm{left},\:\:\mathrm{3}\:\mathrm{is}\:\mathrm{a}\:\mathrm{prime}. \\ $$$$\:\:\:\:\:\mathrm{How}\:\mathrm{many}\:\mathrm{two}\:\mathrm{digit}\:\mathrm{numbers}\:\mathrm{are}\:\mathrm{right}\:\mathrm{prime}\:? \\ $$

Question Number 46042    Answers: 4   Comments: 10

Question Number 46040    Answers: 0   Comments: 0

Question Number 46073    Answers: 3   Comments: 1

Question Number 46032    Answers: 1   Comments: 0

Find the sum: Σ_(k = 1) ^n tan^(−1) (((2k)/(2 + k^2 + k^4 ))) Answer: tan^(−1) (n^2 + n + 1) − (π/4)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}:\:\:\:\:\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\:\mathrm{tan}^{−\mathrm{1}} \:\left(\frac{\mathrm{2k}}{\mathrm{2}\:+\:\mathrm{k}^{\mathrm{2}} \:+\:\mathrm{k}^{\mathrm{4}} }\right) \\ $$$$ \\ $$$$\mathrm{Answer}:\:\:\:\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{n}^{\mathrm{2}} \:+\:\mathrm{n}\:+\:\mathrm{1}\right)\:−\:\frac{\pi}{\mathrm{4}} \\ $$

Question Number 46029    Answers: 0   Comments: 1

Question Number 46025    Answers: 1   Comments: 0

Question Number 46020    Answers: 1   Comments: 0

Question Number 46014    Answers: 0   Comments: 0

Question Number 46012    Answers: 2   Comments: 0

the normal at any point of hyperbola meets the axes at E,F.find the locus of the midpoint of EF.

$$\mathrm{the}\:\mathrm{normal}\:\mathrm{at}\:\mathrm{any}\:\mathrm{point} \\ $$$$\mathrm{of}\:\mathrm{hyperbola}\:\mathrm{meets}\:\mathrm{the}\:\mathrm{axes} \\ $$$$\mathrm{at}\:\mathrm{E},\mathrm{F}.\mathrm{find}\:\mathrm{the}\:\mathrm{locus}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:\mathrm{EF}. \\ $$

Question Number 46011    Answers: 0   Comments: 0

P is any point on rectangular xy=c^2 show that the line joining P to the centre and the tangent at P are equally inclined to the assymptotes

$$\boldsymbol{\mathrm{P}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{any}}\:\boldsymbol{\mathrm{point}}\:\boldsymbol{\mathrm{on}}\:\:\boldsymbol{\mathrm{rectangular}} \\ $$$$\boldsymbol{\mathrm{xy}}=\boldsymbol{\mathrm{c}}^{\mathrm{2}} \boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{line}}\:\boldsymbol{\mathrm{joining}} \\ $$$$\boldsymbol{\mathrm{P}}\:\mathrm{to}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{and}\:\mathrm{the}\: \\ $$$$\mathrm{tangent}\:\mathrm{at}\:\mathrm{P}\:\mathrm{are}\:\mathrm{equally}\:\mathrm{inclined} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{assymptotes} \\ $$

Question Number 46024    Answers: 0   Comments: 1

Question Number 46007    Answers: 1   Comments: 0

Question Number 46003    Answers: 1   Comments: 1

Question Number 45994    Answers: 2   Comments: 0

Question Number 45993    Answers: 1   Comments: 1

Question Number 45992    Answers: 1   Comments: 0

  Pg 1627      Pg 1628      Pg 1629      Pg 1630      Pg 1631      Pg 1632      Pg 1633      Pg 1634      Pg 1635      Pg 1636   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com