Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1631

Question Number 45649    Answers: 1   Comments: 1

Let consider A(3,5), B(6,4) and C(3,−2), d : x−5y+7=0 Consider a dot D such as ABCD is a trapezium and (AD) and (BC) are parallel lines. Q1) Give the equation of the line which contains the point D. Q2) Considering that the trapezium should be convex, are all the points D of the lines correct for the Trapezium ? Which ones are ? Give a proof. I have some difficulties to anzwer the question n°2, could someone please, help me. Thank you. H.T.

$$\mathrm{Let}\:\mathrm{consider}\:\mathrm{A}\left(\mathrm{3},\mathrm{5}\right),\:\mathrm{B}\left(\mathrm{6},\mathrm{4}\right)\:\mathrm{and}\:\mathrm{C}\left(\mathrm{3},−\mathrm{2}\right), \\ $$$$\mathrm{d}\::\:{x}−\mathrm{5}{y}+\mathrm{7}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Consider}\:\mathrm{a}\:\mathrm{dot}\:\mathrm{D}\:\mathrm{such}\:\mathrm{as}\:\mathrm{ABCD}\:\mathrm{is}\:\mathrm{a}\:\mathrm{trapezium} \\ $$$$\mathrm{and}\:\left(\mathrm{AD}\right)\:\mathrm{and}\:\left(\mathrm{BC}\right)\:\mathrm{are}\:\mathrm{parallel}\:\mathrm{lines}. \\ $$$$ \\ $$$$\left.\mathrm{Q1}\right)\:\:\:\mathrm{Give}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{line}\:\mathrm{which} \\ $$$$\mathrm{contains}\:\mathrm{the}\:\mathrm{point}\:\mathrm{D}. \\ $$$$ \\ $$$$\left.\mathrm{Q2}\right)\:\:\:\mathrm{Considering}\:\mathrm{that}\:\mathrm{the}\:\mathrm{trapezium} \\ $$$$\mathrm{should}\:\mathrm{be}\:\mathrm{convex},\:\mathrm{are}\:\mathrm{all}\:\mathrm{the}\:\mathrm{points}\:\mathrm{D}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{lines}\:\mathrm{correct}\:\mathrm{for}\:\mathrm{the}\:\mathrm{Trapezium}\:? \\ $$$$\mathrm{Which}\:\mathrm{ones}\:\mathrm{are}\:? \\ $$$$\mathrm{Give}\:\mathrm{a}\:\mathrm{proof}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{have}\:\mathrm{some}\:\mathrm{difficulties}\:\mathrm{to}\:\mathrm{anzwer}\:\mathrm{the} \\ $$$$\mathrm{question}\:\mathrm{n}°\mathrm{2},\:\mathrm{could}\:\mathrm{someone}\:\mathrm{please}, \\ $$$$\mathrm{help}\:\mathrm{me}. \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you}. \\ $$$$ \\ $$$$\mathrm{H}.\mathrm{T}. \\ $$

Question Number 45646    Answers: 0   Comments: 2

According to relativistic theory, E^2 = p^2 c^2 +m_0 ^2 c^4 where m_0 is rest mass. For photon E= pc... (m_0 =0 for photon) For electron E=mc^2 ... Unlike photon ,Why p^2 c^2 is neglected in case of electron ?

$${According}\:{to}\:{relativistic}\:{theory}, \\ $$$${E}^{\mathrm{2}} =\:{p}^{\mathrm{2}} {c}^{\mathrm{2}} +{m}_{\mathrm{0}} ^{\mathrm{2}} {c}^{\mathrm{4}} \:{where}\:{m}_{\mathrm{0}} \:{is}\:{rest}\:{mass}. \\ $$$${For}\:{photon}\:{E}=\:{pc}... \\ $$$$\left({m}_{\mathrm{0}} =\mathrm{0}\:{for}\:{photon}\right) \\ $$$${For}\:{electron}\:{E}={mc}^{\mathrm{2}} ... \\ $$$${Unlike}\:{photon}\:,{Why}\:{p}^{\mathrm{2}} {c}^{\mathrm{2}} \:{is}\:{neglected}\:\: \\ $$$${in}\:{case}\:{of}\:{electron}\:? \\ $$

Question Number 45645    Answers: 1   Comments: 0

Question Number 45641    Answers: 2   Comments: 1

Question Number 45639    Answers: 3   Comments: 0

Question Number 45638    Answers: 1   Comments: 0

Question Number 45635    Answers: 0   Comments: 2

1)find f(x)=∫_0 ^1 ln(1+xt^3 )dt with ∣x∣<1 2) calculate ∫_0 ^1 ln(2+t^3 )dt .

$$\left.\mathrm{1}\right){find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{xt}^{\mathrm{3}} \right){dt}\:\:{with}\:\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{2}+{t}^{\mathrm{3}} \right){dt}\:. \\ $$

Question Number 45634    Answers: 0   Comments: 0

1)find ∫ ln(1−x^6 )dx 2) calculate ∫_0 ^1 ln(1−x^6 )dx

$$\left.\mathrm{1}\right){find}\:\int\:{ln}\left(\mathrm{1}−{x}^{\mathrm{6}} \right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{x}^{\mathrm{6}} \right){dx} \\ $$

Question Number 45632    Answers: 0   Comments: 2

1)find ∫ ln(1+x^3 )dx 2) calculate ∫_0 ^1 ln(1+x^3 )ex

$$\left.\mathrm{1}\right){find}\:\int\:{ln}\left(\mathrm{1}+{x}^{\mathrm{3}} \right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{x}^{\mathrm{3}} \right){ex} \\ $$

Question Number 45630    Answers: 2   Comments: 0

Question Number 45610    Answers: 0   Comments: 1

Question Number 45609    Answers: 0   Comments: 3

Question Number 45608    Answers: 1   Comments: 0

Question Number 45602    Answers: 2   Comments: 0

Question Number 45601    Answers: 0   Comments: 0

Question Number 45600    Answers: 0   Comments: 2

find f(x,y) =∫_0 ^(π/2) ln(x+y sinθ)dθ with ∣y∣<∣x∣ 2) find f(2,3) 3)find f((√2),(√3)) .

$${find}\:{f}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({x}+{y}\:{sin}\theta\right){d}\theta\:\:{with}\:\:\mid{y}\mid<\mid{x}\mid \\ $$$$\left.\mathrm{2}\right)\:{find}\:{f}\left(\mathrm{2},\mathrm{3}\right) \\ $$$$\left.\mathrm{3}\right){find}\:{f}\left(\sqrt{\mathrm{2}},\sqrt{\mathrm{3}}\right)\:. \\ $$

Question Number 45599    Answers: 0   Comments: 1

1) calculate A_n = ∫_0 ^n (((−1)^([x]) )/(2x+1−[x]))dx 2) find lim_(n→+∞) A_n 3) study the serie Σ A_n

$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{\mathrm{2}{x}+\mathrm{1}−\left[{x}\right]}{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} {A}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{serie}\:\:\Sigma\:{A}_{{n}} \\ $$

Question Number 45598    Answers: 0   Comments: 1

calculate Σ_(n=1) ^∞ ((2n+1)/(n^2 (4n^2 −1)))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\mathrm{2}{n}+\mathrm{1}}{{n}^{\mathrm{2}} \left(\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}\right)} \\ $$

Question Number 45594    Answers: 0   Comments: 1

calculate Σ_(n=1) ^∞ (1/((4n^2 −1)^2 ))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 45592    Answers: 0   Comments: 0

Question Number 45589    Answers: 0   Comments: 0

pl help me sir mathtype 6c seril key

$$\mathrm{pl}\:\mathrm{help}\:\mathrm{me}\:\mathrm{sir}\:\mathrm{mathtype}\:\mathrm{6c}\:\:\mathrm{seril}\:\mathrm{key} \\ $$

Question Number 45585    Answers: 1   Comments: 6

prove that1^3 +2^3 +3^3 +...+n^3 =((n^2 (n+1)^2 )/4) for every natural number n

$$\mathrm{prove}\:\mathrm{that1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} +...+\mathrm{n}^{\mathrm{3}} =\frac{\mathrm{n}^{\mathrm{2}} \left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}\:\mathrm{for}\:\mathrm{every} \\ $$$$\mathrm{natural}\:\mathrm{number}\:\boldsymbol{\mathrm{n}} \\ $$

Question Number 45575    Answers: 2   Comments: 4

Question Number 45565    Answers: 2   Comments: 0

If ax^2 +by^2 +2hxy+2gx+2fy+c=0 be the equation of an ellipse, find coordinates of center of ellipse. Q.45506 (another solution)

$${If}\:\:\boldsymbol{{ax}}^{\mathrm{2}} +\boldsymbol{{by}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{{hxy}}+\mathrm{2}\boldsymbol{{gx}}+\mathrm{2}\boldsymbol{{fy}}+\boldsymbol{{c}}=\mathrm{0} \\ $$$${be}\:{the}\:{equation}\:{of}\:{an}\:{ellipse},\:{find} \\ $$$${coordinates}\:{of}\:{center}\:{of}\:{ellipse}. \\ $$$${Q}.\mathrm{45506}\:\:\left({another}\:{solution}\right) \\ $$

Question Number 45563    Answers: 0   Comments: 0

Question Number 45561    Answers: 0   Comments: 2

  Pg 1626      Pg 1627      Pg 1628      Pg 1629      Pg 1630      Pg 1631      Pg 1632      Pg 1633      Pg 1634      Pg 1635   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com