Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1631

Question Number 46191    Answers: 2   Comments: 0

There are three classes of form four which are 4a, 4b and 4c. in mathematics result the arithmetic mean of 4a 4b and 4c are 70, 60 and 80 and their standard deviation are 3, 3.4, and 2.5 Find the arithmetic mean and standard deviation when we combine the results of mathematics for all classes of form four. Assuming the number of students of 4a,4b and 4c are 30,45,25.

$$\mathrm{There}\:\mathrm{are}\:\mathrm{three}\:\mathrm{classes}\:\mathrm{of}\:\mathrm{form}\:\mathrm{four} \\ $$$$\mathrm{which}\:\mathrm{are}\:\mathrm{4a},\:\mathrm{4b}\:\mathrm{and}\:\mathrm{4c}. \\ $$$$\mathrm{in}\:\mathrm{mathematics}\:\mathrm{result}\:\mathrm{the}\:\mathrm{arithmetic}\:\mathrm{mean}\:\mathrm{of} \\ $$$$\mathrm{4a}\:\mathrm{4b}\:\mathrm{and}\:\mathrm{4c}\:\mathrm{are}\:\mathrm{70},\:\mathrm{60}\:\mathrm{and}\:\mathrm{80}\:\mathrm{and}\:\mathrm{their} \\ $$$$\mathrm{standard}\:\mathrm{deviation}\:\mathrm{are}\:\mathrm{3},\:\mathrm{3}.\mathrm{4},\:\mathrm{and}\:\mathrm{2}.\mathrm{5} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{arithmetic}\:\mathrm{mean}\:\mathrm{and}\:\mathrm{standard}\:\mathrm{deviation}\:\mathrm{when} \\ $$$$\mathrm{we}\:\mathrm{combine}\:\mathrm{the}\:\mathrm{results}\:\mathrm{of}\:\mathrm{mathematics}\:\mathrm{for}\: \\ $$$$\mathrm{all}\:\mathrm{classes}\:\mathrm{of}\:\mathrm{form}\:\mathrm{four}.\:\mathrm{Assuming}\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{students}\:\mathrm{of}\: \\ $$$$\mathrm{4a},\mathrm{4b}\:\mathrm{and}\:\mathrm{4c}\:\mathrm{are}\:\mathrm{30},\mathrm{45},\mathrm{25}. \\ $$$$ \\ $$

Question Number 46188    Answers: 0   Comments: 5

Using dimensional analysis , find out value of n in given expression: ∫(dx/(√(2ax−x^2 ))) = a^n sin^(−1) ((x/a) −1).

$${Using}\:{dimensional}\:{analysis}\:, \\ $$$${find}\:{out}\:{value}\:{of}\:{n}\:{in}\:{given}\:{expression}: \\ $$$$\:\:\int\frac{{dx}}{\sqrt{\mathrm{2}{ax}−{x}^{\mathrm{2}} }}\:=\:{a}^{{n}} \mathrm{sin}^{−\mathrm{1}} \left(\frac{{x}}{{a}}\:−\mathrm{1}\right). \\ $$

Question Number 46187    Answers: 0   Comments: 1

Σ_(n=1) ^∞ (1/(n×n^(1/n) ))=? please help me!!!!

$$\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}×\mathrm{n}^{\frac{\mathrm{1}}{\mathrm{n}}} }=?\:\:\:\:\:\:\:\:\mathrm{please}\:\mathrm{help}\:\mathrm{me}!!!! \\ $$$$ \\ $$

Question Number 46186    Answers: 1   Comments: 1

please help me! S=1^2 q^1 +2^2 q^2 +3^2 q^3 +...+n^2 q^n =?

$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}! \\ $$$$\mathrm{S}=\mathrm{1}^{\mathrm{2}} \mathrm{q}^{\mathrm{1}} +\mathrm{2}^{\mathrm{2}} \mathrm{q}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \mathrm{q}^{\mathrm{3}} +...+\mathrm{n}^{\mathrm{2}} \mathrm{q}^{\mathrm{n}} =? \\ $$

Question Number 46182    Answers: 1   Comments: 4

Question Number 46180    Answers: 0   Comments: 3

Question Number 46172    Answers: 1   Comments: 0

Question Number 46171    Answers: 0   Comments: 1

find ∫ (dx/((√x)+(√(x+1)) +(√(x+2))))

$${find}\:\int\:\:\:\:\frac{{dx}}{\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}\:+\sqrt{{x}+\mathrm{2}}} \\ $$

Question Number 46168    Answers: 2   Comments: 0

Question Number 46157    Answers: 1   Comments: 0

Please help. Find all the general solution of 6x + 8y + 5z = 101 . I got: x = − 48 + 45m + 4n y = 48 + 45m − 3n z = 1 − 2m Please help. Am confused.

$$\mathrm{Please}\:\mathrm{help}. \\ $$$$\:\:\:\:\:\mathrm{Find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\:\:\:\:\:\:\:\mathrm{6x}\:+\:\mathrm{8y}\:+\:\mathrm{5z}\:=\:\mathrm{101}\:. \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{got}:\:\:\:\:\:\:\:\:\mathrm{x}\:=\:−\:\mathrm{48}\:+\:\mathrm{45m}\:+\:\mathrm{4n} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}\:=\:\:\:\:\:\mathrm{48}\:+\:\mathrm{45m}\:−\:\mathrm{3n} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{z}\:=\:\:\:\:\:\:\:\mathrm{1}\:−\:\mathrm{2m} \\ $$$$ \\ $$$$\mathrm{Please}\:\mathrm{help}.\:\:\mathrm{Am}\:\mathrm{confused}.\: \\ $$

Question Number 46156    Answers: 1   Comments: 0

Question Number 46146    Answers: 0   Comments: 3

Question Number 46144    Answers: 0   Comments: 0

Object A is in motion.A moves at a velocity of 12ms^(−2) and B is still(not moving).If A collides with B. a) Calculate the velocity at which B will move if it has mass of 70kg. and A has mass of 60kg. b) the momentum after collision. c) state the principle you applied in a) and b) above

$$\:{Object}\:{A}\:{is}\:{in}\:{motion}.{A}\:{moves}\:{at}\:{a}\:{velocity}\:{of}\: \\ $$$$\mathrm{12}{ms}^{−\mathrm{2}} \:{and}\:{B}\:{is}\:{still}\left({not}\:{moving}\right).{If}\:{A}\:{collides}\:{with}\:{B}. \\ $$$$\left.{a}\right)\:{Calculate}\:{the}\:{velocity}\:{at}\:{which}\:{B}\:{will}\:{move}\:{if}\:{it}\:{has}\:{mass} \\ $$$${of}\:\mathrm{70}{kg}.\:{and}\:{A}\:{has}\:{mass}\:{of}\:\mathrm{60}{kg}. \\ $$$$\left.{b}\right)\:{the}\:{momentum}\:{after}\:{collision}. \\ $$$$\left.{c}\left.\right)\left.\:{state}\:{the}\:{principle}\:{you}\:{applied}\:{in}\:{a}\right)\:{and}\:{b}\right)\:{above} \\ $$$$ \\ $$

Question Number 46143    Answers: 1   Comments: 0

Question Number 46139    Answers: 2   Comments: 1

A park has the shape of a regular hexagon of sides 2km each. A boy walks a distance of 5km along the sides of the park. What is the direct distance between the start point and the end point?

$$\mathrm{A}\:\mathrm{park}\:\mathrm{has}\:\mathrm{the}\:\mathrm{shape}\:\mathrm{of}\:\mathrm{a}\:\mathrm{regular}\:\mathrm{hexagon} \\ $$$$\mathrm{of}\:\mathrm{sides}\:\mathrm{2km}\:\mathrm{each}.\:\mathrm{A}\:\mathrm{boy}\:\mathrm{walks}\:\mathrm{a}\:\mathrm{distance} \\ $$$$\mathrm{of}\:\mathrm{5km}\:\mathrm{along}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{the}\:\mathrm{park}.\: \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{direct}\:\mathrm{distance}\:\mathrm{between}\: \\ $$$$\mathrm{the}\:\mathrm{start}\:\mathrm{point}\:\mathrm{and}\:\mathrm{the}\:\mathrm{end}\:\mathrm{point}? \\ $$

Question Number 46136    Answers: 1   Comments: 0

Question Number 46121    Answers: 0   Comments: 1

Question Number 46129    Answers: 0   Comments: 4

Question Number 46110    Answers: 1   Comments: 2

Question Number 46103    Answers: 1   Comments: 3

Find the area enclosed between curves y^2 (2a−x)=x^3 and line x=2 above the x−axis ? Graphing calculators are not allowed..

$${Find}\:{the}\:{area}\:{enclosed}\:{between}\:{curves} \\ $$$${y}^{\mathrm{2}} \left(\mathrm{2}{a}−{x}\right)={x}^{\mathrm{3}} \:{and}\:{line}\:{x}=\mathrm{2}\:{above}\:{the} \\ $$$${x}−{axis}\:? \\ $$$${Graphing}\:{calculators}\:{are}\:{not}\:{allowed}.. \\ $$

Question Number 46101    Answers: 1   Comments: 0

I=∫(x^(n+1) /(√(1+x^n )))dx=?

$$\mathrm{I}=\int\frac{\mathrm{x}^{\mathrm{n}+\mathrm{1}} }{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{n}} }}\mathrm{dx}=? \\ $$

Question Number 46095    Answers: 1   Comments: 0

Question Number 46091    Answers: 1   Comments: 1

Question Number 46088    Answers: 1   Comments: 0

Question Number 46087    Answers: 1   Comments: 0

please help me!! calculate: I=∫_2 ^(1+e^2 ) ((12288ln(x−1))/([ln^(12) (x−1)+4096](x−1)))dx thanks!!!

$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}!! \\ $$$$\mathrm{calculate}: \\ $$$$\mathrm{I}=\underset{\mathrm{2}} {\overset{\mathrm{1}+\mathrm{e}^{\mathrm{2}} } {\int}}\frac{\mathrm{12288ln}\left(\mathrm{x}−\mathrm{1}\right)}{\left[\mathrm{ln}^{\mathrm{12}} \left(\mathrm{x}−\mathrm{1}\right)+\mathrm{4096}\right]\left(\mathrm{x}−\mathrm{1}\right)}\mathrm{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{thanks}!!! \\ $$

Question Number 46085    Answers: 1   Comments: 2

  Pg 1626      Pg 1627      Pg 1628      Pg 1629      Pg 1630      Pg 1631      Pg 1632      Pg 1633      Pg 1634      Pg 1635   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com