Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1630
Question Number 43187 Answers: 2 Comments: 1
Question Number 43159 Answers: 1 Comments: 0
Question Number 43158 Answers: 2 Comments: 1
$$\int{cosecxdx} \\ $$
Question Number 43157 Answers: 1 Comments: 2
$$\int{secxdx} \\ $$
Question Number 43156 Answers: 1 Comments: 0
$${integrate}\:{w}.{r}.{t}\:{x} \\ $$$$\int\frac{{xe}^{{x}} }{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx} \\ $$
Question Number 43170 Answers: 1 Comments: 3
$${let}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\left[{n}\:{e}^{−{x}} \right]{dx}\:\:{with}\:{n}\:{integr}\:{natural}. \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} . \\ $$
Question Number 43147 Answers: 0 Comments: 2
$$\mathrm{If}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−{x}^{\mathrm{2}} } {dx}\:=\:\frac{\sqrt{\pi}}{\mathrm{2}\:}\:, \\ $$$$\mathrm{then}\:{prove}\:{that}\:\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{a}{x}^{\mathrm{2}} } {dx}\:=\:\sqrt{\frac{\pi}{\mathrm{4a}}} \\ $$$$\mathrm{where}\:\mathrm{a}>\mathrm{0}. \\ $$
Question Number 43145 Answers: 1 Comments: 4
$$\int_{\mathrm{0}} ^{\infty} \:\left[\:\mathrm{2e}^{−{x}} \right]{dx}\:=\:?\: \\ $$$${where}\:\left[.\right]=\:{gif}. \\ $$
Question Number 43135 Answers: 1 Comments: 4
$${Construct}\:{a}\:{triangle}\:\Delta{ABC}\:{with} \\ $$$$\angle{B}=\mathrm{50}° \\ $$$${AC}=\mathrm{6}\:{cm} \\ $$$${AB}+{BC}=\mathrm{8}\:{cm} \\ $$$$ \\ $$$${see}\:{also}\:{Q}\mathrm{42942}. \\ $$
Question Number 43131 Answers: 2 Comments: 1
Question Number 43125 Answers: 1 Comments: 1
Question Number 43100 Answers: 1 Comments: 2
$${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{cos}\theta}{\mathrm{1}+{xsin}\theta}{d}\theta \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{sin}\left(\mathrm{2}\theta\right)}{\left(\mathrm{1}+{xsin}\theta\right)^{\mathrm{2}} }{d}\theta \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{values}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{cos}\theta}{\mathrm{1}+\mathrm{2}{cos}\theta}{d}\theta\:\:\:{and}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{sin}\left(\mathrm{2}\theta\right)}{\left(\mathrm{1}+\mathrm{3}{sin}\theta\right)^{\mathrm{2}} }{d}\theta\:. \\ $$
Question Number 43080 Answers: 0 Comments: 4
Question Number 43072 Answers: 1 Comments: 0
Question Number 43064 Answers: 0 Comments: 8
Question Number 43058 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{x}\:{sin}\left(\frac{\pi{x}}{\mathrm{2}}\right)}{\left\{\mathrm{1}+\left({x}+\mathrm{1}\right)^{\mathrm{2}} \right\}\left\{\mathrm{1}+\left({x}−\mathrm{1}\right)^{\mathrm{2}} \right\}}{dx} \\ $$
Question Number 43057 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left(\pi{x}^{\mathrm{2}} \right)\:−{sin}\left(\pi{x}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$
Question Number 43092 Answers: 0 Comments: 5
Question Number 43128 Answers: 1 Comments: 5
Question Number 43036 Answers: 1 Comments: 1
Question Number 43031 Answers: 2 Comments: 2
Question Number 43027 Answers: 2 Comments: 1
Question Number 43023 Answers: 1 Comments: 1
Question Number 43011 Answers: 0 Comments: 2
Question Number 43008 Answers: 1 Comments: 0
$$\left({y}'\right)^{\mathrm{2}} =−\mathrm{1}+\mathrm{sin}\:{x} \\ $$$${y}=? \\ $$
Question Number 43007 Answers: 1 Comments: 1
$${calculate}\: \\ $$$${A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{k}\:{C}_{{n}} ^{{k}} \\ $$$${B}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{k}^{\mathrm{2}} \:{C}_{{n}} ^{{k}} \\ $$$${C}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{k}^{\mathrm{3}} \:{C}_{{n}} ^{{k}} \\ $$
Pg 1625 Pg 1626 Pg 1627 Pg 1628 Pg 1629 Pg 1630 Pg 1631 Pg 1632 Pg 1633 Pg 1634
Terms of Service
Privacy Policy
Contact: info@tinkutara.com