Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1630

Question Number 44639    Answers: 0   Comments: 1

∫(1/(1+(log x)^2 ))dx=?

$$\int\frac{\mathrm{1}}{\mathrm{1}+\left(\boldsymbol{\mathrm{log}}\:\boldsymbol{\mathrm{x}}\right)^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=? \\ $$$$ \\ $$

Question Number 44636    Answers: 1   Comments: 0

Question Number 44654    Answers: 1   Comments: 4

∫(e^x /(1+x^2 ))dx=?

$$\int\frac{\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} }{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=? \\ $$

Question Number 44623    Answers: 1   Comments: 0

given that sin^(−1) x+sin^(−1) y=c show that (dy/dx)+(√((1−y^2 )/(1−x^2 )))=0

$$\boldsymbol{\mathrm{given}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{sin}}^{−\mathrm{1}} \boldsymbol{{x}}+\boldsymbol{\mathrm{sin}}^{−\mathrm{1}} \boldsymbol{{y}}=\boldsymbol{\mathrm{c}} \\ $$$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\:\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}+\sqrt{\frac{\mathrm{1}−\boldsymbol{{y}}^{\mathrm{2}} }{\mathrm{1}−\boldsymbol{{x}}^{\mathrm{2}} }}=\mathrm{0} \\ $$

Question Number 44622    Answers: 1   Comments: 0

if y=ln[tan((𝛑/4)+(x/2))] show that (dy/dx)=secx

$$\boldsymbol{\mathrm{if}}\:\boldsymbol{{y}}=\boldsymbol{\mathrm{ln}}\left[\boldsymbol{\mathrm{tan}}\left(\frac{\boldsymbol{\pi}}{\mathrm{4}}+\frac{\boldsymbol{{x}}}{\mathrm{2}}\right)\right]\:\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}} \\ $$$$\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}=\boldsymbol{\mathrm{sec}{x}} \\ $$

Question Number 44621    Answers: 2   Comments: 0

Question Number 44613    Answers: 0   Comments: 1

Question Number 44612    Answers: 2   Comments: 0

Prove that One factor of determinant (((a^2 +x),( ab),( ac)),(( ab),(b^2 +x),( cb)),(( ca),( cb),(c^2 +x))) is x^2 .

$${Prove}\:{that}\:\mathrm{One}\:\mathrm{factor}\:\mathrm{of}\begin{vmatrix}{{a}^{\mathrm{2}} +{x}}&{\:\:{ab}}&{\:\:{ac}}\\{\:\:{ab}}&{{b}^{\mathrm{2}} +{x}}&{\:\:{cb}}\\{\:\:{ca}}&{\:\:{cb}}&{{c}^{\mathrm{2}} +{x}}\end{vmatrix}\:\mathrm{is}\:{x}^{\mathrm{2}} . \\ $$

Question Number 44604    Answers: 1   Comments: 1

∫[((log x − 1)/(1+(log x)^2 ))]^2 dx = (x/((log x)^2 +1))+C

$$\int\left[\frac{\boldsymbol{\mathrm{log}}\:\boldsymbol{\mathrm{x}}\:\:−\:\:\mathrm{1}}{\mathrm{1}+\left(\boldsymbol{\mathrm{log}}\:\boldsymbol{\mathrm{x}}\right)^{\mathrm{2}} }\right]^{\mathrm{2}} \boldsymbol{\mathrm{dx}}\:\:=\:\:\frac{\boldsymbol{\mathrm{x}}}{\left(\boldsymbol{\mathrm{log}}\:\boldsymbol{\mathrm{x}}\right)^{\mathrm{2}} +\mathrm{1}}+\boldsymbol{\mathrm{C}} \\ $$

Question Number 44602    Answers: 0   Comments: 0

∫(e^x /(1+x^2 )) dx = ?

$$\int\frac{\boldsymbol{{e}}^{\boldsymbol{\mathrm{x}}} }{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\:\boldsymbol{\mathrm{dx}}\:=\:\:? \\ $$

Question Number 44587    Answers: 1   Comments: 2

calculate ∫_0 ^∞ (dt/(1+t^(2018) ))

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2018}} } \\ $$

Question Number 44584    Answers: 1   Comments: 5

Prove that if a, b, c ∈ Z and a^2 + b^2 = c^2 , then 3 ∣ ab

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}\:\:{a},\:{b},\:{c}\:\in\:\mathbb{Z}\:\:\mathrm{and}\:\:{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:=\:{c}^{\mathrm{2}} ,\:\mathrm{then} \\ $$$$\mathrm{3}\:\mid\:{ab} \\ $$

Question Number 44674    Answers: 0   Comments: 1

solving some integrals we might meet some of the following functions which cannot be solved with elementar knowledge but tables should exist somewhere in the depth of the www... these links might be interesting exponential integral ∫(e^(−x) /x)dx en.wikipedia.org/wiki/Exponential_integral logarithmic integral ∫(dx/(ln x)) en.wikipedia.org/wiki/Logarithmic_integral_function also see en.wikipedia.org/wiki/Polylogarithm trigonometric integrals i.e. ∫((sin x)/x)dx en.wikipedia.org/wiki/Trigonometric_integral

$$\mathrm{solving}\:\mathrm{some}\:\mathrm{integrals}\:\mathrm{we}\:\mathrm{might}\:\mathrm{meet}\:\mathrm{some} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{functions}\:\mathrm{which}\:\mathrm{cannot}\:\mathrm{be} \\ $$$$\mathrm{solved}\:\mathrm{with}\:\mathrm{elementar}\:\mathrm{knowledge}\:\mathrm{but}\:\mathrm{tables} \\ $$$$\mathrm{should}\:\mathrm{exist}\:\mathrm{somewhere}\:\mathrm{in}\:\mathrm{the}\:\mathrm{depth}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{www}... \\ $$$$\mathrm{these}\:\mathrm{links}\:\mathrm{might}\:\mathrm{be}\:\mathrm{interesting} \\ $$$$ \\ $$$$\mathrm{exponential}\:\mathrm{integral} \\ $$$$\int\frac{\mathrm{e}^{−{x}} }{{x}}{dx} \\ $$$$\mathrm{en}.\mathrm{wikipedia}.\mathrm{org}/\mathrm{wiki}/\mathrm{Exponential\_integral} \\ $$$$ \\ $$$$\mathrm{logarithmic}\:\mathrm{integral} \\ $$$$\int\frac{{dx}}{\mathrm{ln}\:{x}} \\ $$$$\mathrm{en}.\mathrm{wikipedia}.\mathrm{org}/\mathrm{wiki}/\mathrm{Logarithmic\_integral\_function} \\ $$$$\mathrm{also}\:\mathrm{see} \\ $$$$\mathrm{en}.\mathrm{wikipedia}.\mathrm{org}/\mathrm{wiki}/\mathrm{Polylogarithm} \\ $$$$ \\ $$$$\mathrm{trigonometric}\:\mathrm{integrals} \\ $$$$\mathrm{i}.\mathrm{e}.\:\int\frac{\mathrm{sin}\:{x}}{{x}}{dx} \\ $$$$\mathrm{en}.\mathrm{wikipedia}.\mathrm{org}/\mathrm{wiki}/\mathrm{Trigonometric\_integral} \\ $$

Question Number 44570    Answers: 1   Comments: 0

Question Number 44573    Answers: 1   Comments: 1

Question Number 44575    Answers: 1   Comments: 3

Question Number 44557    Answers: 1   Comments: 2

Question Number 44548    Answers: 0   Comments: 0

(a) The area of a sector of a circle of radius 12cm is 132cm^2 . If the sector is folded such that its straight edges coincide to form a cone. Find the radius of the base of the cone [ Take π = ((22)/7) ] . (b) A circle of centre O has radius 5cm. A chord PQ of the circle is 6cm long. caclculate: (i) The distance of the chord from the centre O (ii) The angle POQ

$$\left(\mathrm{a}\right) \\ $$$$\mathrm{The}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{sector}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{radius}\:\:\mathrm{12cm}\:\mathrm{is}\:\:\mathrm{132cm}^{\mathrm{2}} \:.\:\:\mathrm{If}\:\mathrm{the}\:\mathrm{sector} \\ $$$$\mathrm{is}\:\mathrm{folded}\:\mathrm{such}\:\mathrm{that}\:\mathrm{its}\:\mathrm{straight}\:\mathrm{edges}\:\mathrm{coincide}\:\mathrm{to}\:\mathrm{form}\:\mathrm{a}\:\mathrm{cone}.\:\mathrm{Find}\:\mathrm{the}\: \\ $$$$\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{base}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cone}\:\:\:\:\left[\:\:\mathrm{Take}\:\:\:\:\pi\:\:=\:\:\frac{\mathrm{22}}{\mathrm{7}}\:\right]\:. \\ $$$$ \\ $$$$\left(\mathrm{b}\right)\:\:\: \\ $$$$\mathrm{A}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{centre}\:\mathrm{O}\:\mathrm{has}\:\mathrm{radius}\:\mathrm{5cm}.\:\:\mathrm{A}\:\mathrm{chord}\:\mathrm{PQ}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{is}\:\mathrm{6cm}\:\mathrm{long}. \\ $$$$\mathrm{caclculate}: \\ $$$$\:\:\:\:\left(\mathrm{i}\right)\:\:\:\mathrm{The}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{the}\:\mathrm{chord}\:\mathrm{from}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{O} \\ $$$$\:\:\:\left(\mathrm{ii}\right)\:\:\mathrm{The}\:\mathrm{angle}\:\mathrm{POQ} \\ $$

Question Number 44546    Answers: 1   Comments: 0

$$ \\ $$

Question Number 44543    Answers: 1   Comments: 3

If y =f(x) = ax^2 +bx+c and at some x, say x= p ∫_0 ^( p) ydx = y(p)= y ′(p) = y ′′(p)= p , then find p .

$${If}\:\:{y}\:={f}\left({x}\right)\:=\:{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$${and}\:\:{at}\:{some}\:{x},\:{say}\:\:{x}=\:{p} \\ $$$$\int_{\mathrm{0}} ^{\:\:{p}} {ydx}\:=\:{y}\left({p}\right)=\:{y}\:'\left({p}\right)\:=\:{y}\:''\left({p}\right)=\:{p}\:, \\ $$$${then}\:{find}\:\boldsymbol{{p}}\:. \\ $$

Question Number 44541    Answers: 1   Comments: 1

Find the remainder when the polynomial p(y)=y^4 −3y^2 +2y+1 is divided by y−1.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when}\:\mathrm{the} \\ $$$$\mathrm{polynomial}\:{p}\left({y}\right)={y}^{\mathrm{4}} −\mathrm{3}{y}^{\mathrm{2}} +\mathrm{2}{y}+\mathrm{1}\:\mathrm{is} \\ $$$$\mathrm{divided}\:\mathrm{by}\:{y}−\mathrm{1}. \\ $$

Question Number 44537    Answers: 1   Comments: 0

Question Number 44535    Answers: 0   Comments: 1

Question Number 44527    Answers: 0   Comments: 2

Question Number 44526    Answers: 1   Comments: 1

Find moment of inertia of the area bounded by the curve r^2 =a^2 cos2θ about its axis

$$\mathrm{Find}\:\mathrm{moment}\:\mathrm{of}\:\mathrm{inertia}\:\mathrm{of}\:\mathrm{the}\:\mathrm{area}\:\mathrm{bounded} \\ $$$$\mathrm{by}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{r}^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} \mathrm{cos2}\theta \\ $$$$\mathrm{about}\:\mathrm{its}\:\mathrm{axis} \\ $$

Question Number 44515    Answers: 1   Comments: 0

let g(x) =∫_0 ^∞ ((t ln(t)dt)/((1+xt)^3 )) with x>0 1) give a explicit form of g(x) 2) calculate ∫_0 ^∞ ((t ln(t))/((1+t)^3 ))dt 3) calculate ∫_0 ^∞ ((tln(t))/((1+2t)^3 )) dt 4) calculate A(θ) =∫_0 ^∞ ((t ln(t))/((1+t sinθ)^3 ))dt with 0<θ<(π/2)

$${let}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}\:{ln}\left({t}\right){dt}}{\left(\mathrm{1}+{xt}\right)^{\mathrm{3}} }\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{give}\:{a}\:{explicit}\:{form}\:{of}\:{g}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}\:{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{3}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{tln}\left({t}\right)}{\left(\mathrm{1}+\mathrm{2}{t}\right)^{\mathrm{3}} }\:{dt} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{A}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}\:{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\:{sin}\theta\right)^{\mathrm{3}} }{dt}\:\:{with}\:\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$

  Pg 1625      Pg 1626      Pg 1627      Pg 1628      Pg 1629      Pg 1630      Pg 1631      Pg 1632      Pg 1633      Pg 1634   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com