Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1615
Question Number 44480 Answers: 2 Comments: 0
$${prove}\:{that}\:\:\frac{\mathrm{9}\pi}{\mathrm{8}\:\:}−\frac{\mathrm{9}}{\mathrm{4}}\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{9}}{\mathrm{4}}\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$
Question Number 44479 Answers: 1 Comments: 5
Question Number 44478 Answers: 1 Comments: 0
$${prove}\:{that}\:\mathrm{2tan}^{−\mathrm{1}} \left(\sqrt{\frac{{a}−{b}}{{a}+{b}\:}}\:\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\right)=\mathrm{cos}^{−\mathrm{1}} \left(\frac{{b}+{acos}\theta}{{a}+{bcos}\theta}\right) \\ $$
Question Number 44491 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{interior}}\:\boldsymbol{\mathrm{angles}} \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{any}}\:\boldsymbol{\mathrm{triangle}}\:\boldsymbol{\mathrm{is}}\:\mathrm{180}. \\ $$
Question Number 44476 Answers: 0 Comments: 6
$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{2}{xt}−\mathrm{1}} \\ $$$$\left.\mathrm{1}\right){find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{cslvulste}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+{t}−\mathrm{1}} \\ $$$$\left.\mathrm{3}\right){calculate}\:{A}\left(\theta\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{2}{tan}\left(\theta\right){t}\:−\mathrm{1}} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{tdt}}{\left({t}^{\mathrm{2}} \:+\mathrm{2}{xt}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{5}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{tdt}}{\left({t}^{\mathrm{2}} \:+\mathrm{4}{t}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 44475 Answers: 0 Comments: 0
$${find}\:{a}\:{and}\:{b}\:\:{if}\:\int_{\mathrm{0}} ^{\infty} \:\left(\sqrt{{t}}\:+{a}\sqrt{{t}+\mathrm{1}}+{b}\sqrt{{t}+\mathrm{2}}\right){dt} \\ $$$${converges}\:{and}\:{give}\:{its}\:{value}\:{in}\:{this}\:{case}. \\ $$
Question Number 44473 Answers: 0 Comments: 1
$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{sin}\left({n}\left[{t}\right]\right){e}^{−{t}} {dt} \\ $$$$\left.\mathrm{2}\right){calculate}\:{A}_{{n}} \:\:{and}\:{lim}_{{n}\rightarrow+\infty} {n}\:{A}_{{n}} \\ $$$$\left.\mathrm{3}\right){study}\:{the}\:{convergence}\:{of}\:\sum_{{n}} \:{A}_{{n}} \\ $$
Question Number 44472 Answers: 0 Comments: 1
$${find}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({t}\right){dt}}{\left(\mathrm{1}+{xt}\right)^{\mathrm{2}} }\:{withx}>\mathrm{0} \\ $$
Question Number 44471 Answers: 0 Comments: 2
$${calculste}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 44470 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} {sin}^{\mathrm{2}} {t}} \\ $$
Question Number 44468 Answers: 0 Comments: 0
$${let}\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{{e}^{−{k}} }{\sqrt{{k}}} \\ $$$${find}\:{a}\:{equivalent}\:{of}\:{u}_{{n}} \:{when}\:{n}\rightarrow+\infty\:. \\ $$
Question Number 44467 Answers: 1 Comments: 0
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{x}^{{n}} {sinx}\:−{sin}\left({x}^{{n}} \right)}{{x}}\:\:{with}\:{n}\:{integr}\:{natural}. \\ $$
Question Number 44466 Answers: 0 Comments: 4
$${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}\:{sinx}}{{a}^{\mathrm{2}} \:+{x}^{\mathrm{4}} }{dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{g}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{xsinx}}{\left({a}^{\mathrm{2}} \:+{x}^{\mathrm{4}} \right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}\:{sinx}}{{x}^{\mathrm{4}} \:+\mathrm{1}}{dx} \\ $$$$\left.\mathrm{4}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{xsinx}}{\left({x}^{\mathrm{4}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:. \\ $$$$ \\ $$
Question Number 44454 Answers: 0 Comments: 4
Question Number 44444 Answers: 1 Comments: 0
$${simplify}\:\:\:\:\sqrt{\left(\mathrm{4}{x}^{\mathrm{2}} {y}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} +\left(\mathrm{8}{x}^{\mathrm{2}} {y}^{\mathrm{2}} \right)^{\mathrm{4}} } \\ $$
Question Number 44441 Answers: 1 Comments: 0
Question Number 44436 Answers: 1 Comments: 1
Question Number 44430 Answers: 0 Comments: 0
Question Number 44424 Answers: 1 Comments: 0
$${by}\:{considering}\:\:{a}\:{sermicircle}\:{from}\:−{r}\:{to}\:\:{r}\:{prove}\:{that}\:{area}\:{of}\:{circle}\:{is}\:\pi{r}^{\mathrm{2}} \\ $$
Question Number 44423 Answers: 1 Comments: 0
$${evaluate}\:\int\mathrm{3}^{{x}} {dx} \\ $$
Question Number 44422 Answers: 0 Comments: 3
$${use}\:{substitution}\:{x}=\mathrm{cos}\:^{\mathrm{2}} \theta+\mathrm{3}{sin}^{\mathrm{2}} \theta \\ $$$${show}\:{that}\int_{\mathrm{1}} ^{\mathrm{3}} \frac{{dx}}{\sqrt{\left({x}−\mathrm{1}\right)\left(\mathrm{3}−{x}\right)}}=\pi \\ $$
Question Number 44411 Answers: 0 Comments: 0
Question Number 44397 Answers: 2 Comments: 4
$${If}\:{x}\:{is}\:{nearly}\:{equal}\:{to}\:\mathrm{1}\:{then} \\ $$$$\frac{{mx}^{{m}} −{nx}^{{n}} }{{m}−{n}}= \\ $$
Question Number 44395 Answers: 1 Comments: 3
Question Number 44389 Answers: 0 Comments: 0
$${Given}\:\mathrm{2}\:{events}\:{A}\:{and}\:{B}\:{such}\:{that} \\ $$$${P}\left({A}\right)=\frac{\mathrm{1}}{\mathrm{3}}\:,\:{P}\left({A}\cup{B}\right)=\frac{\mathrm{3}}{\mathrm{4}}\:{then} \\ $$$${find}\:{range}\:{of}\:{P}\left({B}\right)? \\ $$
Question Number 44387 Answers: 0 Comments: 0
Pg 1610 Pg 1611 Pg 1612 Pg 1613 Pg 1614 Pg 1615 Pg 1616 Pg 1617 Pg 1618 Pg 1619
Terms of Service
Privacy Policy
Contact: info@tinkutara.com