Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1615
Question Number 37353 Answers: 0 Comments: 1
$${let}\:{g}\left({z}\right)\:=\frac{{z}}{{e}^{{z}} −\mathrm{1}} \\ $$$${developp}\:{g}\:{at}\:{integr}\:{serie}\:. \\ $$
Question Number 37352 Answers: 0 Comments: 1
$${let}\:\:{f}\left({z}\right)\:=\:{e}^{−\frac{\mathrm{1}}{{z}^{\mathrm{2}} }} \:\: \\ $$$$\left.\mathrm{1}\right)\:{give}\:{f}\left({z}\right)\:{at}\:{form}\:{of}\:{serie} \\ $$$$\left.\mathrm{2}\right)\:{give}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} {f}\left({z}\right){dz}\:\:\:{at}\:{form}\:{of}\:{serie}\:. \\ $$
Question Number 37350 Answers: 0 Comments: 2
$${fond}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\frac{{dt}}{\left({a}\:+{cost}\right)^{\mathrm{2}} }\:\:{with}\:{a}>\mathrm{1}. \\ $$$$ \\ $$
Question Number 37349 Answers: 0 Comments: 1
$${calculate}\:\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\frac{{dt}}{\mathrm{1}−\mathrm{2}{pcost}\:+{p}^{\mathrm{2}} }\:\:{if}\:\mid{p}\mid<\mathrm{1} \\ $$
Question Number 37348 Answers: 0 Comments: 2
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\frac{{dt}}{{p}\:+{cost}}\:\:{with}\:{p}>\mathrm{1} \\ $$
Question Number 37347 Answers: 1 Comments: 2
$${let}\:{r}\:=\sqrt{{p}^{\mathrm{2}} \:+{q}^{\mathrm{2}} }\:\:\:{p}\:{and}\:{q}\:{from}\:{R}\:\:{and}\:{p}>\mathrm{0}\:\:{q}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:{e}^{−{px}} \:\frac{{cos}\left({px}\right)}{\sqrt{{x}}}{dx}=\frac{\sqrt{\pi}}{{r}}\sqrt{\frac{{r}+{p}}{\mathrm{2}}} \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{px}} \:\:\frac{{sin}\left({qx}\right)}{\sqrt{{x}}}{dx}\:=\frac{\sqrt{\pi}}{{r}}\:\sqrt{\frac{{r}−{p}}{\mathrm{2}}} \\ $$
Question Number 37346 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dt}}{{a}\:{cos}^{\mathrm{2}} {t}\:+{b}\:{sin}^{\mathrm{2}} {t}} \\ $$$${with}\:{a}>\mathrm{0}\:{and}\:{b}>\mathrm{0}\:. \\ $$
Question Number 37345 Answers: 0 Comments: 0
$${calculate}\:{I}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{\mathrm{1}+{acost}}{\mathrm{1}+\mathrm{2}{acost}\:+{a}^{\mathrm{2}} }{dt}\:\: \\ $$$$\left.\mathrm{1}\right)\:{if}\:\:\mid{a}\mid<\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{if}\:\mid{a}\mid>\mathrm{1} \\ $$
Question Number 37344 Answers: 0 Comments: 1
$${solve}\:{the}\:{d}.{e}.\:{y}^{'} \:−{xy}\:\:={cosx}\:. \\ $$
Question Number 37343 Answers: 0 Comments: 3
$${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right){dt}\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{2}+{t}^{\mathrm{2}} \right){dt}\:. \\ $$
Question Number 37342 Answers: 0 Comments: 2
$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)}\:{x}^{{n}} \:\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)\mathrm{2}^{{n}} }\:. \\ $$
Question Number 37341 Answers: 0 Comments: 1
$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\mathrm{3}}{{n}^{\mathrm{2}} \left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 37339 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\:\:\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{1}\:+\mathrm{2}^{\mathrm{3}} \:+\mathrm{3}^{\mathrm{3}} \:+...+{n}^{\mathrm{3}} } \\ $$
Question Number 37338 Answers: 0 Comments: 1
$${calculate}\:\:{B}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:{sh}^{{n}} {xdx}\:. \\ $$
Question Number 37337 Answers: 0 Comments: 1
$${calculate}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ch}^{{n}} {xdx}\:. \\ $$
Question Number 37335 Answers: 0 Comments: 1
$${find}\:\int\:\:\:\:\:{x}\:{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right){dx}\:. \\ $$
Question Number 37334 Answers: 0 Comments: 1
$${study}\:{the}\:{convergence}\:{of} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} \:\sum_{{k}=\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{k}} }{{k}!}\:. \\ $$
Question Number 37333 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{3}} } \\ $$$$\left.\mathrm{1}\right){study}\:{the}\:{convergence}\:{of}\:{this}\:{serie} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\:\int_{\mathrm{0}} ^{\pi} {f}\left({x}\right){dx}=\mathrm{2}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$\left.\mathrm{3}\right){prove}\:{that}\:\forall{x}\in\:\in{R}\:\:{f}^{'} \left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{cos}\left({nx}\right)}{{n}^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right)\:{prove}\:{that}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\:\sum_{{n}\geqslant\mathrm{1}} \frac{{cos}\left({nx}\right)}{{n}^{\mathrm{2}} }\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 37324 Answers: 0 Comments: 3
Question Number 46453 Answers: 1 Comments: 6
Question Number 37317 Answers: 2 Comments: 4
$$\int\:\frac{\mathrm{acos}\:{x}+{b}}{\left({a}+{b}\mathrm{cos}\:{x}\right)^{\mathrm{2}} }{dx}\:=\:? \\ $$
Question Number 37316 Answers: 1 Comments: 0
$$\int\:\frac{{x}^{\mathrm{2}} }{\left({x}\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} }{dx}\:=\:? \\ $$
Question Number 37310 Answers: 1 Comments: 1
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)\left({x}^{\mathrm{2}} \:+\mathrm{9}\right)}\:. \\ $$
Question Number 37309 Answers: 1 Comments: 2
$${calculate}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:{dx}\:. \\ $$
Question Number 37307 Answers: 0 Comments: 1
$${calculate}\:\:\:\int_{\gamma} \:\:\:\:\frac{{dz}}{{z}}\:\:\:{with}\:\gamma\:=\left\{{z}\in{C}\:/\mid{z}\mid=\mathrm{1}\right\}\:. \\ $$
Question Number 37306 Answers: 0 Comments: 1
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:{e}^{{ix}} \:\:\:\frac{{x}−{i}}{\left({x}+{i}\right)\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)}\:{dx}\:. \\ $$$$ \\ $$
Pg 1610 Pg 1611 Pg 1612 Pg 1613 Pg 1614 Pg 1615 Pg 1616 Pg 1617 Pg 1618 Pg 1619
Terms of Service
Privacy Policy
Contact: info@tinkutara.com