Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1615

Question Number 41519    Answers: 2   Comments: 0

let z=(√(2−(√3))) −i(√(2+(√3))) calculate ∣z^n ∣ and arg(z^n )

$${let}\:{z}=\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}\:\:−{i}\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}} \\ $$$${calculate}\:\mid{z}^{{n}} \mid\:\:{and}\:{arg}\left({z}^{{n}} \right) \\ $$

Question Number 41518    Answers: 3   Comments: 0

calculate A_n = ∫_0 ^1 (1−t^2 )^n dt with n integr natural

$${calculate}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} {dt}\:\:\:{with}\:{n}\:{integr}\:{natural} \\ $$

Question Number 41517    Answers: 1   Comments: 1

let S_n = 1 +(1/((^3 (√2)))) + (1/((^3 (√3)))) + ....+(1/((^3 (√n)))) calculate lim _(n→+∞) S_n

$${let}\:\:{S}_{{n}} =\:\mathrm{1}\:+\frac{\mathrm{1}}{\left(^{\mathrm{3}} \sqrt{\mathrm{2}}\right)}\:+\:\frac{\mathrm{1}}{\left(^{\mathrm{3}} \sqrt{\mathrm{3}}\right)}\:+\:....+\frac{\mathrm{1}}{\left(^{\mathrm{3}} \sqrt{{n}}\right)} \\ $$$${calculate}\:{lim}\:_{{n}\rightarrow+\infty} \:{S}_{{n}} \\ $$

Question Number 41516    Answers: 1   Comments: 1

calculate ∫_0 ^1 ((ln(1+x))/((1+x)^4 )) dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{4}} }\:{dx} \\ $$

Question Number 41515    Answers: 1   Comments: 3

let f_n (x) =((sin(2(n+1)x))/(sinx)) if x∈]0,(π/2)] and f_n (0)=2(n+1) let u_n = ∫_0 ^(π/2) f_n (x)dx 1) prove that ∀n fromN u_(n+1) −u_n =2(((−1)^(n+1) )/(2n+3)) 2)find lim_(n→+∞) u_n

$$\left.{l}\left.{et}\:\:{f}_{{n}} \left({x}\right)\:=\frac{{sin}\left(\mathrm{2}\left({n}+\mathrm{1}\right){x}\right)}{{sinx}}\:{if}\:\:{x}\in\right]\mathrm{0},\frac{\pi}{\mathrm{2}}\right]\:{and}\:{f}_{{n}} \left(\mathrm{0}\right)=\mathrm{2}\left({n}+\mathrm{1}\right)\:\:{let} \\ $$$${u}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{f}_{{n}} \left({x}\right){dx} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\forall{n}\:{fromN}\:\:{u}_{{n}+\mathrm{1}} −{u}_{{n}} =\mathrm{2}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{3}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} \\ $$

Question Number 41514    Answers: 1   Comments: 0

find ∫ cos(lnx)dx

$${find}\:\:\:\int\:\:{cos}\left({lnx}\right){dx}\: \\ $$

Question Number 41513    Answers: 2   Comments: 0

let A_n = ∫_0 ^∞ e^(−nx^2 ) cos(x^2 ) dx and B_n =∫_0 ^∞ e^(−nx^2 ) sin(x^2 )dx (n∈ N^★ ) 1) calculate A_n and B_n 2) find lim_(n→+∞) (A_n /B_n )

$${let}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{nx}^{\mathrm{2}} } {cos}\left({x}^{\mathrm{2}} \right)\:{dx}\:\:{and}\:\:{B}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{nx}^{\mathrm{2}} } {sin}\left({x}^{\mathrm{2}} \right){dx}\:\:\:\:\left({n}\in\:{N}^{\bigstar} \right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\:{A}_{{n}} \:{and}\:\:{B}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{{A}_{{n}} }{{B}_{{n}} } \\ $$

Question Number 41512    Answers: 0   Comments: 0

let u_n =(1/1^3 ) +(1/2^3 ) +....+(1/n^3 ) 1)prove that (9/8) −(1/(2(n+1)^2 )) ≤ u_n ≤ (3/2) −(1/(2n^2 )) 2) prove that ∀ n∈N^★ 1≤u_n ≤ (3/2) 3) prove that (u_n )is convegente .

$${let}\:\:{u}_{{n}} =\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{3}} }\:+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }\:+....+\frac{\mathrm{1}}{{n}^{\mathrm{3}} } \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:\:\:\frac{\mathrm{9}}{\mathrm{8}}\:−\frac{\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:\leqslant\:{u}_{{n}} \leqslant\:\frac{\mathrm{3}}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\forall\:{n}\in{N}^{\bigstar} \:\:\:\mathrm{1}\leqslant{u}_{{n}} \leqslant\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:\left({u}_{{n}} \right){is}\:{convegente}\:. \\ $$

Question Number 41508    Answers: 0   Comments: 0

A facial surgery is estimated to cost N25millon in 10 years time. A 50 years old woman that is expecting to go on retirement at 55years is planning to generate funds for the surgery at her retirement. ow much should she set aside for the surgery if the interest rate is 14.75% at the time of retirement? what is the present value of the cost of surgery?(as at the time the woman is 50years given the interest rate at that time is 11.5%)

$${A}\:\boldsymbol{\mathrm{facial}}\:\boldsymbol{\mathrm{surgery}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{estimated}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{cost}}\:\boldsymbol{\mathrm{N}}\mathrm{25}\boldsymbol{\mathrm{millon}}\:\boldsymbol{\mathrm{in}}\:\mathrm{10}\:\boldsymbol{\mathrm{years}}\:\boldsymbol{\mathrm{time}}.\: \\ $$$$\mathrm{A}\:\mathrm{50}\:\boldsymbol{\mathrm{years}}\:\boldsymbol{\mathrm{old}}\:\boldsymbol{\mathrm{woman}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{expecting}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{go}}\:\boldsymbol{\mathrm{on}}\:\boldsymbol{\mathrm{retirement}}\:\boldsymbol{\mathrm{at}}\:\mathrm{55}\boldsymbol{\mathrm{years}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{planning}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{generate}}\:\boldsymbol{\mathrm{funds}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{surgery}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{her}}\:\boldsymbol{\mathrm{retirement}}. \\ $$$$\boldsymbol{\mathrm{ow}}\:\boldsymbol{\mathrm{much}}\:\boldsymbol{\mathrm{should}}\:\boldsymbol{\mathrm{she}}\:\boldsymbol{\mathrm{set}}\:\boldsymbol{\mathrm{aside}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{surgery}}\:\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{interest}}\:\boldsymbol{\mathrm{rate}}\:\boldsymbol{\mathrm{is}}\:\mathrm{14}.\mathrm{75\%}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{time}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{retirement}}?\: \\ $$$$\boldsymbol{\mathrm{what}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{present}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{cost}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{surgery}}?\left(\boldsymbol{\mathrm{as}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{time}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{woman}}\:\boldsymbol{\mathrm{is}}\:\mathrm{50}\boldsymbol{\mathrm{years}}\:\boldsymbol{\mathrm{given}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{interest}}\:\boldsymbol{\mathrm{rate}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{time}}\:\boldsymbol{\mathrm{is}}\:\mathrm{11}.\mathrm{5\%}\right) \\ $$

Question Number 41495    Answers: 2   Comments: 3

The equation π^x =−2x^2 +6x−9 has

$$\mathrm{The}\:\mathrm{equation}\:\pi^{{x}} =−\mathrm{2}{x}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{9}\:\mathrm{has} \\ $$

Question Number 41488    Answers: 2   Comments: 0

Question Number 41487    Answers: 3   Comments: 4

Question Number 41461    Answers: 1   Comments: 3

Find area of square inserted in curve f(x)= 3x−x^3 .

$$\mathrm{Find}\:\mathrm{area}\:\mathrm{of}\:\mathrm{square}\:\mathrm{inserted}\:\mathrm{in}\:\mathrm{curve} \\ $$$$\mathrm{f}\left({x}\right)=\:\mathrm{3}{x}−{x}^{\mathrm{3}} . \\ $$

Question Number 41459    Answers: 0   Comments: 1

Question Number 41454    Answers: 1   Comments: 1

Evaluate Σ_(k=1) ^(2n−1) (−1)^(k−1) k^3

$$\mathrm{Evaluate}\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}{n}−\mathrm{1}} {\sum}}\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} {k}^{\mathrm{3}} \\ $$

Question Number 41447    Answers: 1   Comments: 0

Question Number 41444    Answers: 0   Comments: 1

Given that cos(θ + (π/3))= (1/2) find the values of θ inthe range 0°≤ θ≤360°

$${Given}\:{that}\:\:\:{cos}\left(\theta\:+\:\frac{\pi}{\mathrm{3}}\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\:{find}\:{the}\:{values}\:{of}\:\theta\:{inthe}\:{range}\:\:\mathrm{0}°\leqslant\:\theta\leqslant\mathrm{360}° \\ $$

Question Number 41443    Answers: 1   Comments: 0

Suppose that you wish to fabricate a uniform wire out of 1 gram of copper.If the wire is to have a resistance of R=0.5Ω,and all of the copper is to be used.What will be(i)the length and (ii)the diameter of the wire.

$${Suppose}\:{that}\:{you}\:{wish}\:{to}\:{fabricate} \\ $$$${a}\:{uniform}\:{wire}\:{out}\:{of}\:\mathrm{1}\:{gram}\:{of} \\ $$$${copper}.{If}\:{the}\:{wire}\:{is}\:{to}\:{have}\:{a} \\ $$$${resistance}\:{of}\:{R}=\mathrm{0}.\mathrm{5}\Omega,{and}\:{all}\:{of} \\ $$$${the}\:{copper}\:{is}\:{to}\:{be}\:{used}.{What}\:{will} \\ $$$${be}\left({i}\right){the}\:{length}\:{and}\:\left({ii}\right){the}\:{diameter} \\ $$$${of}\:{the}\:{wire}. \\ $$

Question Number 41479    Answers: 1   Comments: 0

Question Number 41436    Answers: 4   Comments: 0

Question Number 41434    Answers: 1   Comments: 1

Question Number 41431    Answers: 0   Comments: 3

Question Number 41410    Answers: 0   Comments: 2

let A_n =∫_0 ^∞ [ne^(−x) ]dx with n≥2 1) calculate A_n 2) find nature of Σ_(n≥2) A_n 3) study the convergence of Σ (1/A_n ) and Σ (1/A_n ^2 )

$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\left[{ne}^{−{x}} \right]{dx}\:\:{with}\:{n}\geqslant\mathrm{2} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:\sum_{{n}\geqslant\mathrm{2}} \:\:\:{A}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{convergence}\:{of}\:\:\Sigma\:\frac{\mathrm{1}}{{A}_{{n}} }\:\:{and}\:\Sigma\:\frac{\mathrm{1}}{{A}_{{n}} ^{\mathrm{2}} } \\ $$

Question Number 41409    Answers: 1   Comments: 0

calculate S_p =Σ_(n=1) ^∞ (((−1)^n )/(n(n+1)(n+2)...(n+p))) with p fromN

$${calculate}\:{S}_{{p}} =\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)...\left({n}+{p}\right)}\:\:{with}\:{p}\:{fromN} \\ $$

Question Number 41408    Answers: 0   Comments: 1

calculate Σ_(n=1) ^∞ (((−1)^n )/(n(n+1)(n+2)(n+3)))

$${calculate}\:\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\left({n}+\mathrm{3}\right)} \\ $$

Question Number 41407    Answers: 0   Comments: 1

calculate Σ_(n=1) ^∞ (((−1)^n )/(n(n+1)(n+2)))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)} \\ $$

  Pg 1610      Pg 1611      Pg 1612      Pg 1613      Pg 1614      Pg 1615      Pg 1616      Pg 1617      Pg 1618      Pg 1619   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com