Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1614

Question Number 40271    Answers: 1   Comments: 0

Using Bionomial solve; Given that y = 3x and x increases at 2(1/2)%, find percentage increase in y.

$${Using}\:{Bionomial}\:{solve}; \\ $$$${Given}\:{that}\:\:{y}\:=\:\mathrm{3}{x}\:\:{and}\:{x}\:{increases} \\ $$$${at}\:\mathrm{2}\frac{\mathrm{1}}{\mathrm{2}}\%,\:{find}\:\:{percentage}\:{increase} \\ $$$${in}\:{y}. \\ $$

Question Number 40270    Answers: 1   Comments: 0

calculate the area of one “leaf” of r=sin nθ n∈N

$$\mathrm{calculate}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{one}\:``\mathrm{leaf}''\:\mathrm{of} \\ $$$${r}=\mathrm{sin}\:{n}\theta \\ $$$${n}\in\mathbb{N} \\ $$

Question Number 40260    Answers: 0   Comments: 2

let f(x)=sin(2x) 1) find f^((n)) (x) and f^((n)) (0) 2) developp f at integr serie .

$${let}\:{f}\left({x}\right)={sin}\left(\mathrm{2}{x}\right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$

Question Number 40251    Answers: 1   Comments: 0

1. ∫(dα/(sin 2α +tan 3α))=? 2. ∫(dβ/(cos 2β +cos 3β))=? 3. ∫(dγ/(sinh 2γ +tanh 3γ))=? 4. ∫(dδ/(cosh 2δ +cosh 3δ))=?

$$\mathrm{1}.\:\:\:\:\:\int\frac{{d}\alpha}{\mathrm{sin}\:\mathrm{2}\alpha\:+\mathrm{tan}\:\mathrm{3}\alpha}=? \\ $$$$\mathrm{2}.\:\:\:\:\:\int\frac{{d}\beta}{\mathrm{cos}\:\mathrm{2}\beta\:+\mathrm{cos}\:\mathrm{3}\beta}=? \\ $$$$\mathrm{3}.\:\:\:\:\:\int\frac{{d}\gamma}{\mathrm{sinh}\:\mathrm{2}\gamma\:+\mathrm{tanh}\:\mathrm{3}\gamma}=? \\ $$$$\mathrm{4}.\:\:\:\:\:\int\frac{{d}\delta}{\mathrm{cosh}\:\mathrm{2}\delta\:+\mathrm{cosh}\:\mathrm{3}\delta}=? \\ $$

Question Number 40255    Answers: 1   Comments: 2

Question Number 40254    Answers: 0   Comments: 3

sum of this series: 1.3.5+3.5.7+5.7.9+...up to n terms

$${sum}\:{of}\:{this}\:{series}: \\ $$$$\mathrm{1}.\mathrm{3}.\mathrm{5}+\mathrm{3}.\mathrm{5}.\mathrm{7}+\mathrm{5}.\mathrm{7}.\mathrm{9}+...{up}\:{to}\:{n}\:{terms} \\ $$

Question Number 40238    Answers: 2   Comments: 0

Question Number 40237    Answers: 1   Comments: 4

Mr Rag is a buisiness man in at the Sao Paolo main market. He took a loan of 200,000 bucks from a bank for 3 yrs at 3.5% per month. Find the compound interest.

$${Mr}\:{Rag}\:{is}\:{a}\:{buisiness}\:{man}\:{in} \\ $$$${at}\:{the}\:{Sao}\:{Paolo}\:{main}\:{market}. \\ $$$${He}\:{took}\:{a}\:{loan}\:{of}\:\mathrm{200},\mathrm{000}\:{bucks} \\ $$$${from}\:{a}\:{bank}\:{for}\:\mathrm{3}\:{yrs}\:{at}\:\mathrm{3}.\mathrm{5\%} \\ $$$${per}\:{month}.\:{Find}\:{the}\:\boldsymbol{{compound}} \\ $$$$\boldsymbol{{interest}}. \\ $$

Question Number 40236    Answers: 1   Comments: 0

if a b c are in H.P then prove that (a/(b+c)),(b/(c+a)),(c/(a+b)) arw also in H.P.

$${if}\:{a}\:{b}\:{c}\:{are}\:{in}\:{H}.{P}\:{then}\:{prove}\:{that}\:\frac{{a}}{{b}+{c}},\frac{{b}}{{c}+{a}},\frac{{c}}{{a}+{b}}\:\:{arw} \\ $$$${also}\:{in}\:{H}.{P}. \\ $$

Question Number 40231    Answers: 1   Comments: 0

Question Number 40222    Answers: 1   Comments: 0

please help Kate was given 602.00 dollas for shopping. She spent (1/4) on chocolate and later (2/3) on goods. How much money was left?

$$\mathrm{please}\:\mathrm{help} \\ $$$$\mathrm{Kate}\:\mathrm{was}\:\mathrm{given}\:\mathrm{602}.\mathrm{00}\:\mathrm{dollas}\:\mathrm{for}\: \\ $$$$\mathrm{shopping}.\:\mathrm{She}\:\mathrm{spent}\:\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{on}\:\mathrm{chocolate} \\ $$$$\mathrm{and}\:\mathrm{later}\:\frac{\mathrm{2}}{\mathrm{3}}\:\mathrm{on}\:\mathrm{goods}.\:\mathrm{How}\:\mathrm{much} \\ $$$$\mathrm{money}\:\mathrm{was}\:\mathrm{left}? \\ $$

Question Number 40218    Answers: 2   Comments: 0

find the nth term and the sum to n termof the following seried (i) 4+6+9+13+18+... (ii) 11+23+59+167+...

$${find}\:{the}\:{nth}\:{term}\:{and}\:{the}\:{sum}\:{to}\:{n}\:\:{termof}\:{the}\:{following}\:{seried} \\ $$$$\left({i}\right)\:\mathrm{4}+\mathrm{6}+\mathrm{9}+\mathrm{13}+\mathrm{18}+... \\ $$$$\left({ii}\right)\:\mathrm{11}+\mathrm{23}+\mathrm{59}+\mathrm{167}+... \\ $$

Question Number 40216    Answers: 1   Comments: 0

Question Number 40213    Answers: 0   Comments: 0

Question Number 40212    Answers: 2   Comments: 1

Solve 4x^2 −8x−3=0

$${Solve}\:\mathrm{4}{x}^{\mathrm{2}} −\mathrm{8}{x}−\mathrm{3}=\mathrm{0} \\ $$

Question Number 40188    Answers: 0   Comments: 0

can any one plss answer question ; 40057

$${can}\:{any}\:{one}\:{plss}\:{answer} \\ $$$${question}\:;\:\mathrm{40057} \\ $$

Question Number 40186    Answers: 0   Comments: 0

Question Number 40185    Answers: 0   Comments: 0

Question Number 40176    Answers: 0   Comments: 0

Question Number 40173    Answers: 1   Comments: 1

Question Number 40945    Answers: 0   Comments: 0

Two parallel plate conductors 1m from each other carry an electric current of 2A each.Find the magnetic force per metre on each wire.

$${Two}\:{parallel}\:{plate}\:{conductors}\:\mathrm{1}{m} \\ $$$${from}\:{each}\:{other}\:{carry}\:{an}\:{electric} \\ $$$${current}\:{of}\:\mathrm{2}{A}\:{each}.{Find}\:{the}\:{magnetic} \\ $$$${force}\:{per}\:{metre}\:{on}\:{each}\:{wire}. \\ $$

Question Number 40170    Answers: 1   Comments: 3

Question Number 40161    Answers: 0   Comments: 0

study the convergence of ∫_0 ^∞ ((sin((1/x^2 )))/(ln(1+(√x))))dx

$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{sin}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}{{ln}\left(\mathrm{1}+\sqrt{{x}}\right)}{dx} \\ $$

Question Number 40160    Answers: 0   Comments: 1

study the convergence of ∫_0 ^1 ((1−e^(−t) )/(t(√t))) dt

$${study}\:{the}\:{convergence}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{1}−{e}^{−{t}} }{{t}\sqrt{{t}}}\:{dt} \\ $$

Question Number 40159    Answers: 0   Comments: 1

let I_n = ∫_0 ^∞ (dx/((1+x^3 )^n )) find a relation etween I_n and I_(n+1) 2) calculate I_(1 ) and I_2

$${let}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{{n}} } \\ $$$${find}\:{a}\:{relation}\:{etween}\:{I}_{{n}} \:{and}\:{I}_{{n}+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}_{\mathrm{1}\:} \:{and}\:{I}_{\mathrm{2}} \\ $$

Question Number 40158    Answers: 0   Comments: 3

let A_n = ∫_0 ^1 ((x^(2n+1) ln(x))/(x^2 −1))dx 1) justify the existence of A_n 2)calculate A_(n+1) −A_n 3) prove that x∈]0,1[ ⇒0<((xln(x))/(x^2 −1))<(1/2) 4) find lim_(n→+∞) A_n

$${let}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} \:{ln}\left({x}\right)}{{x}^{\mathrm{2}} \:−\mathrm{1}}{dx} \\ $$$$\left.\mathrm{1}\right)\:{justify}\:{the}\:{existence}\:{of}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right){calculate}\:{A}_{{n}+\mathrm{1}} \:−{A}_{{n}} \\ $$$$\left.\mathrm{3}\left.\right)\:{prove}\:{that}\:\:{x}\in\right]\mathrm{0},\mathrm{1}\left[\:\Rightarrow\mathrm{0}<\frac{{xln}\left({x}\right)}{{x}^{\mathrm{2}} \:−\mathrm{1}}<\frac{\mathrm{1}}{\mathrm{2}}\:\:\right. \\ $$$$\left.\mathrm{4}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} {A}_{{n}} \\ $$

  Pg 1609      Pg 1610      Pg 1611      Pg 1612      Pg 1613      Pg 1614      Pg 1615      Pg 1616      Pg 1617      Pg 1618   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com