Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1613
Question Number 44773 Answers: 0 Comments: 0
$$ \\ $$
Question Number 44765 Answers: 0 Comments: 0
Question Number 44763 Answers: 1 Comments: 1
Question Number 44761 Answers: 0 Comments: 1
Question Number 44749 Answers: 1 Comments: 1
Question Number 44737 Answers: 0 Comments: 0
$${A}\:{and}\:{B}\:{are}\:{two}\:{non}−{singular}\:{matrices} \\ $$$${such}\:{that}\:{A}^{\mathrm{6}} ={I}\:{and}\:{AB}^{\mathrm{2}} ={BA}\left({B}\neq{I}\right). \\ $$$${Then}\:{value}\:{of}\:{K}\:{for}\:{which}\:{B}^{{K}} ={I}. \\ $$
Question Number 44730 Answers: 1 Comments: 1
Question Number 44729 Answers: 4 Comments: 0
Question Number 44716 Answers: 1 Comments: 0
$$\mathrm{prove}:\:\:\:\:\:\mathrm{1}\:+\:\mathrm{11}\:+\:\mathrm{111}\:+\:....\:+\:\frac{\mathrm{111}\:...\mathrm{111}}{\mathrm{n}\:\mathrm{times}}\:\:=\:\:\frac{\mathrm{10}^{\mathrm{n}\:+\:\mathrm{1}} \:−\:\mathrm{9n}\:−\:\mathrm{10}}{\mathrm{81}} \\ $$
Question Number 44712 Answers: 3 Comments: 0
Question Number 44708 Answers: 1 Comments: 0
$${Let}\:{A},{B}\:{be}\:{two}\:{n}×{n}\:{matrices}\:{such} \\ $$$${that}\:{A}+{B}={AB}\:{then}\:{prove}\:: \\ $$$${AB}={BA}\:? \\ $$
Question Number 44702 Answers: 0 Comments: 0
Question Number 44697 Answers: 0 Comments: 0
$$\boldsymbol{{prove}}\:\boldsymbol{{that}}:− \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{{t}}^{\boldsymbol{{a}}−\mathrm{1}} }{\mathrm{1}+\boldsymbol{{t}}}\boldsymbol{{dt}}\:=\:\frac{\boldsymbol{\pi}}{\boldsymbol{{sin}}\left(\boldsymbol{\pi{a}}\right)} \\ $$
Question Number 44704 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\::\:\:\:\:\:\:\:\:\:\:\:\mathrm{311x}\:−\:\mathrm{112y}\:=\:\mathrm{73} \\ $$
Question Number 44706 Answers: 0 Comments: 4
$${let}\:{f}_{\alpha} \left({x}\right)\:=\:\frac{{cos}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{3}\right)\:{give}\:\int_{\mathrm{0}} ^{{x}} \:{f}_{\alpha} \left({t}\right)\:{dt}\:\:{at}\:{form}\:{of}\:{serie}\: \\ $$$$\left.\mathrm{4}\right)\:{developp}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:{f}_{\alpha} \left({t}\right){dt}\:\:{at}\:\:{integr}\:{serie}\:. \\ $$
Question Number 44696 Answers: 1 Comments: 1
$$\int\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{4}} }\boldsymbol{\mathrm{dx}}\:=\:? \\ $$
Question Number 44695 Answers: 0 Comments: 2
$$\int\frac{\boldsymbol{\mathrm{e}}^{\sqrt{\boldsymbol{\mathrm{t}}−\mathrm{1}}} }{\boldsymbol{\mathrm{t}}}\boldsymbol{\mathrm{dt}}\:=\:? \\ $$
Question Number 44691 Answers: 1 Comments: 1
Question Number 44676 Answers: 1 Comments: 6
Question Number 44652 Answers: 2 Comments: 4
$${Prove}\:{that}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+{ax}\right)^{\frac{\mathrm{1}}{{b}}} −\mathrm{1}}{{x}}\:=\:\frac{{a}}{{b}}. \\ $$
Question Number 44639 Answers: 0 Comments: 1
$$\int\frac{\mathrm{1}}{\mathrm{1}+\left(\boldsymbol{\mathrm{log}}\:\boldsymbol{\mathrm{x}}\right)^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=? \\ $$$$ \\ $$
Question Number 44636 Answers: 1 Comments: 0
Question Number 44654 Answers: 1 Comments: 4
$$\int\frac{\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} }{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=? \\ $$
Question Number 44623 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{given}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{sin}}^{−\mathrm{1}} \boldsymbol{{x}}+\boldsymbol{\mathrm{sin}}^{−\mathrm{1}} \boldsymbol{{y}}=\boldsymbol{\mathrm{c}} \\ $$$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\:\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}+\sqrt{\frac{\mathrm{1}−\boldsymbol{{y}}^{\mathrm{2}} }{\mathrm{1}−\boldsymbol{{x}}^{\mathrm{2}} }}=\mathrm{0} \\ $$
Question Number 44622 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{if}}\:\boldsymbol{{y}}=\boldsymbol{\mathrm{ln}}\left[\boldsymbol{\mathrm{tan}}\left(\frac{\boldsymbol{\pi}}{\mathrm{4}}+\frac{\boldsymbol{{x}}}{\mathrm{2}}\right)\right]\:\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}} \\ $$$$\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}=\boldsymbol{\mathrm{sec}{x}} \\ $$
Question Number 44621 Answers: 2 Comments: 0
Pg 1608 Pg 1609 Pg 1610 Pg 1611 Pg 1612 Pg 1613 Pg 1614 Pg 1615 Pg 1616 Pg 1617
Terms of Service
Privacy Policy
Contact: info@tinkutara.com