Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1613

Question Number 47062    Answers: 1   Comments: 0

find ∫ (√(((√x)−1)/((√x)+1)))dx

$${find}\:\int\:\:\:\sqrt{\frac{\sqrt{{x}}−\mathrm{1}}{\sqrt{{x}}+\mathrm{1}}}{dx} \\ $$

Question Number 47061    Answers: 0   Comments: 0

let f(a) =∫ (√(1+atan(x)))dx 1) find a explicit form of f(a) 2) calculate ∫ (√(1+2tan(x)))dx .

$${let}\:\:{f}\left({a}\right)\:=\int\:\:\:\sqrt{\mathrm{1}+{atan}\left({x}\right)}{dx} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int\:\:\sqrt{\mathrm{1}+\mathrm{2}{tan}\left({x}\right)}{dx}\:. \\ $$

Question Number 47060    Answers: 0   Comments: 0

let f(x) = ∫_0 ^1 (dt/(2+ch(xt))) 1) find a explicit form of f(x) 2) calculate g(x)=∫_0 ^1 ((tsh(xt))/((2+ch(xt))^2 ))dt 3) find the value of ∫_0 ^1 (dt/(2+ch(3t))) and ∫_0 ^1 ((tsh(3t))/((2+ch(3t))^2 ))dt 4) calculate u_n =∫_0 ^1 (dt/(2+ch(nt))) with n natural integr and study the convergence of the serie Σ (u_n /n) .

$${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dt}}{\mathrm{2}+{ch}\left({xt}\right)} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{tsh}\left({xt}\right)}{\left(\mathrm{2}+{ch}\left({xt}\right)\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\mathrm{2}+{ch}\left(\mathrm{3}{t}\right)}\:{and}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{tsh}\left(\mathrm{3}{t}\right)}{\left(\mathrm{2}+{ch}\left(\mathrm{3}{t}\right)\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{u}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dt}}{\mathrm{2}+{ch}\left({nt}\right)}\:{with}\:{n}\:{natural}\:{integr}\:\:{and}\:{study}\:{the}\:{convergence} \\ $$$${of}\:{the}\:{serie}\:\Sigma\:\frac{{u}_{{n}} }{{n}}\:. \\ $$

Question Number 47059    Answers: 2   Comments: 1

find ∫ (dx/(1+cos x +cos(2x)))

$$\:{find}\:\int\:\:\frac{{dx}}{\mathrm{1}+{cos}\:{x}\:+{cos}\left(\mathrm{2}{x}\right)} \\ $$

Question Number 47058    Answers: 1   Comments: 0

calculate ∫_0 ^1 ((1+x^3 )/(1+x^4 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}+{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$

Question Number 47043    Answers: 0   Comments: 0

if p is a prime number and (a,p)= then prove that a^(p−1) ≡ 1(mod p)

$${if}\:{p}\:{is}\:{a}\:{prime}\:{number}\:{and}\:\left({a},{p}\right)=\:{then}\:{prove}\:{that}\:{a}^{{p}−\mathrm{1}} \equiv\:\mathrm{1}\left({mod}\:{p}\right) \\ $$

Question Number 47036    Answers: 0   Comments: 0

let m,n denotes any two possitive,relative prime integers, then prove that φ(mn)=φ(m)∙φ(n)

$${let}\:{m},{n}\:{denotes}\:{any}\:{two}\:{possitive},{relative}\:{prime}\:{integers},\:{then}\:{prove}\:{that}\:\phi\left({mn}\right)=\phi\left({m}\right)\centerdot\phi\left({n}\right) \\ $$

Question Number 47035    Answers: 1   Comments: 1

(d^2 +a^2 )y=tan ax by the method of variation of parameters

$$\left({d}^{\mathrm{2}} +{a}^{\mathrm{2}} \right){y}={tan}\:{ax}\:{by}\:{the}\:{method}\:{of}\:{variation}\:{of}\:{parameters} \\ $$

Question Number 47034    Answers: 1   Comments: 0

find angel between spheres x^2 +y^2 +z^2 =29, x^2 +y^2 +z^2 +4x−6y−8z−47=0 (4,−3,2)

$${find}\:{angel}\:{between}\:{spheres}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{29},\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{6}{y}−\mathrm{8}{z}−\mathrm{47}=\mathrm{0}\:\:\left(\mathrm{4},−\mathrm{3},\mathrm{2}\right) \\ $$

Question Number 47026    Answers: 4   Comments: 4

Question Number 47019    Answers: 2   Comments: 2

Question Number 47018    Answers: 1   Comments: 1

find ∫ (√(x+2−(√(x−1))))dx

$${find}\:\int\:\sqrt{{x}+\mathrm{2}−\sqrt{{x}−\mathrm{1}}}{dx} \\ $$

Question Number 47010    Answers: 1   Comments: 1

Question Number 47006    Answers: 1   Comments: 1

Question Number 47005    Answers: 1   Comments: 1

Question Number 47001    Answers: 0   Comments: 0

Question Number 46998    Answers: 1   Comments: 0

In physics how do we find average half-life? please i need help

$${In}\:{physics}\:{how}\:{do}\:{we}\:{find}\: \\ $$$${average}\:{half}-{life}? \\ $$$$ \\ $$$${please}\:{i}\:{need}\:{help} \\ $$

Question Number 46996    Answers: 1   Comments: 0

Question Number 47098    Answers: 1   Comments: 8

prove that:lim_(n→∞) ∫_(−1) ^1 (1+(t/n))^n dt = e−(1/e).

$${prove}\:{that}:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \left(\mathrm{1}+\frac{{t}}{{n}}\right)^{{n}} {dt}\:=\:{e}−\frac{\mathrm{1}}{{e}}. \\ $$

Question Number 46983    Answers: 0   Comments: 0

(u_n ) is a sequence wich verify u_n =n u_(n−1) −λ (λ from R and n≥1) calculate u_n interm of n and λ .

$$\left({u}_{{n}} \right)\:{is}\:{a}\:{sequence}\:{wich}\:{verify}\:{u}_{{n}} ={n}\:{u}_{{n}−\mathrm{1}} \:−\lambda\:\:\left(\lambda\:{from}\:{R}\:{and}\:{n}\geqslant\mathrm{1}\right) \\ $$$${calculate}\:{u}_{{n}} {interm}\:{of}\:{n}\:{and}\:\lambda\:. \\ $$

Question Number 46978    Answers: 2   Comments: 0

Question Number 46977    Answers: 0   Comments: 1

3x+2≡0(mod 7)

$$\mathrm{3}{x}+\mathrm{2}\equiv\mathrm{0}\left({mod}\:\mathrm{7}\right) \\ $$

Question Number 46974    Answers: 2   Comments: 1

Number of integers n for which 3x^3 −25x+n=0 has three real roots is ?

$${Number}\:{of}\:{integers}\:{n}\:{for}\:{which}\: \\ $$$$\mathrm{3}{x}^{\mathrm{3}} −\mathrm{25}{x}+{n}=\mathrm{0}\:{has}\:{three}\:{real}\:{roots}\:{is}\:? \\ $$$$ \\ $$

Question Number 46973    Answers: 1   Comments: 0

Question Number 46972    Answers: 0   Comments: 0

let m,n denote any two possitive relative prime integers,then prove thatφ(mn)=φ(m)∙φ(n)

$$\boldsymbol{{let}}\:{m},{n}\:{denote}\:{any}\:{two}\:{possitive}\:{relative}\:{prime}\:{integers},{then}\:{prove}\:{that}\phi\left({mn}\right)=\phi\left({m}\right)\centerdot\phi\left({n}\right) \\ $$

Question Number 46962    Answers: 0   Comments: 1

  Pg 1608      Pg 1609      Pg 1610      Pg 1611      Pg 1612      Pg 1613      Pg 1614      Pg 1615      Pg 1616      Pg 1617   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com