Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1612
Question Number 44783 Answers: 1 Comments: 0
$$\left({x}^{\mathrm{2}} \right)^{\mathrm{2}} +\left({y}^{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{97}.......\mathrm{1} \\ $$$$\left({x}^{\mathrm{2}} \right)^{\mathrm{3}} +\left({y}^{\mathrm{2}} \right)^{\mathrm{3}} =\mathrm{793}.......\mathrm{2} \\ $$$${solve}\:{the}\:{simultaneous}\:{equation} \\ $$
Question Number 44781 Answers: 2 Comments: 0
$$\boldsymbol{{prove}}\:\boldsymbol{{that}}:−\:\int\frac{\mathrm{1}}{\boldsymbol{\mathrm{t}}\sqrt{\mathrm{1}−\boldsymbol{\mathrm{t}}^{\mathrm{2}} }}\boldsymbol{\mathrm{dt}}\:=\:\boldsymbol{\mathrm{ln}}\left(\mathrm{1}−\sqrt{\mathrm{1}−\boldsymbol{\mathrm{t}}^{\mathrm{2}} }\right)+\boldsymbol{\mathrm{C}} \\ $$
Question Number 44779 Answers: 0 Comments: 2
Question Number 44778 Answers: 0 Comments: 0
Question Number 44777 Answers: 0 Comments: 0
Question Number 44795 Answers: 1 Comments: 4
Question Number 44773 Answers: 0 Comments: 0
$$ \\ $$
Question Number 44765 Answers: 0 Comments: 0
Question Number 44763 Answers: 1 Comments: 1
Question Number 44761 Answers: 0 Comments: 1
Question Number 44749 Answers: 1 Comments: 1
Question Number 44737 Answers: 0 Comments: 0
$${A}\:{and}\:{B}\:{are}\:{two}\:{non}−{singular}\:{matrices} \\ $$$${such}\:{that}\:{A}^{\mathrm{6}} ={I}\:{and}\:{AB}^{\mathrm{2}} ={BA}\left({B}\neq{I}\right). \\ $$$${Then}\:{value}\:{of}\:{K}\:{for}\:{which}\:{B}^{{K}} ={I}. \\ $$
Question Number 44730 Answers: 1 Comments: 1
Question Number 44729 Answers: 4 Comments: 0
Question Number 44716 Answers: 1 Comments: 0
$$\mathrm{prove}:\:\:\:\:\:\mathrm{1}\:+\:\mathrm{11}\:+\:\mathrm{111}\:+\:....\:+\:\frac{\mathrm{111}\:...\mathrm{111}}{\mathrm{n}\:\mathrm{times}}\:\:=\:\:\frac{\mathrm{10}^{\mathrm{n}\:+\:\mathrm{1}} \:−\:\mathrm{9n}\:−\:\mathrm{10}}{\mathrm{81}} \\ $$
Question Number 44712 Answers: 3 Comments: 0
Question Number 44708 Answers: 1 Comments: 0
$${Let}\:{A},{B}\:{be}\:{two}\:{n}×{n}\:{matrices}\:{such} \\ $$$${that}\:{A}+{B}={AB}\:{then}\:{prove}\:: \\ $$$${AB}={BA}\:? \\ $$
Question Number 44702 Answers: 0 Comments: 0
Question Number 44697 Answers: 0 Comments: 0
$$\boldsymbol{{prove}}\:\boldsymbol{{that}}:− \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{{t}}^{\boldsymbol{{a}}−\mathrm{1}} }{\mathrm{1}+\boldsymbol{{t}}}\boldsymbol{{dt}}\:=\:\frac{\boldsymbol{\pi}}{\boldsymbol{{sin}}\left(\boldsymbol{\pi{a}}\right)} \\ $$
Question Number 44704 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\::\:\:\:\:\:\:\:\:\:\:\:\mathrm{311x}\:−\:\mathrm{112y}\:=\:\mathrm{73} \\ $$
Question Number 44706 Answers: 0 Comments: 4
$${let}\:{f}_{\alpha} \left({x}\right)\:=\:\frac{{cos}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{3}\right)\:{give}\:\int_{\mathrm{0}} ^{{x}} \:{f}_{\alpha} \left({t}\right)\:{dt}\:\:{at}\:{form}\:{of}\:{serie}\: \\ $$$$\left.\mathrm{4}\right)\:{developp}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:{f}_{\alpha} \left({t}\right){dt}\:\:{at}\:\:{integr}\:{serie}\:. \\ $$
Question Number 44696 Answers: 1 Comments: 1
$$\int\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{4}} }\boldsymbol{\mathrm{dx}}\:=\:? \\ $$
Question Number 44695 Answers: 0 Comments: 2
$$\int\frac{\boldsymbol{\mathrm{e}}^{\sqrt{\boldsymbol{\mathrm{t}}−\mathrm{1}}} }{\boldsymbol{\mathrm{t}}}\boldsymbol{\mathrm{dt}}\:=\:? \\ $$
Question Number 44691 Answers: 1 Comments: 1
Question Number 44676 Answers: 1 Comments: 6
Question Number 44652 Answers: 2 Comments: 4
$${Prove}\:{that}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+{ax}\right)^{\frac{\mathrm{1}}{{b}}} −\mathrm{1}}{{x}}\:=\:\frac{{a}}{{b}}. \\ $$
Pg 1607 Pg 1608 Pg 1609 Pg 1610 Pg 1611 Pg 1612 Pg 1613 Pg 1614 Pg 1615 Pg 1616
Terms of Service
Privacy Policy
Contact: info@tinkutara.com