Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1611

Question Number 40675    Answers: 1   Comments: 2

Question Number 40667    Answers: 1   Comments: 2

find the value lim_(x→0) g(x) must have, if g complies the statement about limit. Suppose lim_(x→ −4) [x lim_(x→0) g(x)] = 2

$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{g}\left(\mathrm{x}\right)\:\:\mathrm{must}\:\mathrm{have},\:\mathrm{if}\:\mathrm{g}\:\mathrm{complies}\:\mathrm{the}\:\mathrm{statement}\: \\ $$$$\mathrm{about}\:\mathrm{limit}.\:\mathrm{Suppose}\:\:\:\underset{{x}\rightarrow\:−\mathrm{4}} {\mathrm{lim}}\:\:\left[\mathrm{x}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\mathrm{g}\left(\mathrm{x}\right)\right]\:\:=\:\:\mathrm{2} \\ $$

Question Number 40665    Answers: 1   Comments: 0

−5−( )=3 −5−x=3 x=3+5 x=8(give sign of greater number) −5−8=3

$$−\mathrm{5}−\left(\:\:\right)=\mathrm{3} \\ $$$$−\mathrm{5}−{x}=\mathrm{3} \\ $$$${x}=\mathrm{3}+\mathrm{5} \\ $$$${x}=\mathrm{8}\left({give}\:{sign}\:{of}\:{greater}\:{number}\right) \\ $$$$−\mathrm{5}−\mathrm{8}=\mathrm{3} \\ $$

Question Number 40664    Answers: 1   Comments: 0

Factorise: x^(19) − x^(17) + x^(10) + x^8 + 1

$$\mathrm{Factorise}:\:\:\:\:\:\mathrm{x}^{\mathrm{19}} \:−\:\mathrm{x}^{\mathrm{17}} \:+\:\mathrm{x}^{\mathrm{10}} \:+\:\mathrm{x}^{\mathrm{8}} \:+\:\mathrm{1} \\ $$

Question Number 40662    Answers: 1   Comments: 5

Question Number 40661    Answers: 0   Comments: 4

1)find g(x)=∫_0 ^(π/2) ln(1−x^2 cos^2 θ)dθ with x from R 2) find the value of ∫_0 ^(π/2) ln(1−2 cos^2 θ)dθ and 3) find the value of A(α)=∫_0 ^(π/2) ln(1−cos^2 α cos^2 θ)dθ

$$\left.\mathrm{1}\right){find}\:\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}−{x}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta\right){d}\theta\:\:{with}\:{x}\:{from}\:{R} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}−\mathrm{2}\:{cos}^{\mathrm{2}} \theta\right){d}\theta\:{and} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\: \\ $$$${A}\left(\alpha\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}−{cos}^{\mathrm{2}} \alpha\:{cos}^{\mathrm{2}} \theta\right){d}\theta\: \\ $$

Question Number 40660    Answers: 0   Comments: 0

let f(t) = ∫_0 ^∞ ((arctan(tcosx))/(1+x^2 ))dx 1) find another form of f(t) 2) calculate ∫_0 ^∞ ((arctan(2cosx))/(1+x^2 ))dx .

$${let}\:{f}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({tcosx}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{another}\:{form}\:{of}\:{f}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{arctan}\left(\mathrm{2}{cosx}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:. \\ $$

Question Number 40658    Answers: 0   Comments: 1

find ∫_0 ^(π/4) ((x−1)/(2+cosx))dx .

$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{x}−\mathrm{1}}{\mathrm{2}+{cosx}}{dx}\:. \\ $$

Question Number 40657    Answers: 1   Comments: 0

Question Number 40656    Answers: 1   Comments: 0

(((a 0 0)),((0 a 0)) ) 0 0 a then the value of mod of adjA is

$$\begin{pmatrix}{\mathrm{a}\:\mathrm{0}\:\mathrm{0}}\\{\mathrm{0}\:\mathrm{a}\:\mathrm{0}}\end{pmatrix} \\ $$$$\:\:\:\mathrm{0}\:\mathrm{0}\:\mathrm{a}\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{mod}\:\mathrm{of}\:\mathrm{adjA}\:\mathrm{is} \\ $$$$ \\ $$

Question Number 40640    Answers: 2   Comments: 0

evaluate sin 72^.

$${evaluate} \\ $$$$\mathrm{sin}\:\mathrm{72}\:^{.} \\ $$

Question Number 41351    Answers: 1   Comments: 3

∫_0 ^∞ [(5/e^x )]dx=

$$\int_{\mathrm{0}} ^{\infty} \left[\frac{\mathrm{5}}{\mathrm{e}^{\mathrm{x}} }\right]\mathrm{dx}= \\ $$

Question Number 40637    Answers: 2   Comments: 0

Question Number 40625    Answers: 2   Comments: 0

Question Number 40624    Answers: 0   Comments: 0

let f(x)=∫_0 ^(π/2) ln(((1−xsint)/(1+xsint)))dt . 1) find the value of I = ∫_0 ^(π/2) ln(1−xsint)dt and J = ∫_0 ^(π/2) ln(1+xsint)dt 2) find a simple form of f(x) 3) developp f at integr serie

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\frac{\mathrm{1}−{xsint}}{\mathrm{1}+{xsint}}\right){dt}\:\:. \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left(\mathrm{1}−{xsint}\right){dt} \\ $$$${and}\:{J}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{xsint}\right){dt} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$

Question Number 40621    Answers: 2   Comments: 0

let f(x)=∫_0 ^(π/2) ln(1+xcosθ)dθ 1) calculate f(1) 2) find a simple form of f(x) 3) developp f at ontehr serie

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{xcos}\theta\right){d}\theta\: \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left(\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{ontehr}\:{serie} \\ $$

Question Number 40620    Answers: 3   Comments: 0

find ∫ ((x+1)(√(1+x^2 )) +(1+x^2 )(√(x+1)))dx

$${find}\:\:\int\:\:\:\left(\left({x}+\mathrm{1}\right)\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:+\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{{x}+\mathrm{1}}\right){dx} \\ $$

Question Number 40619    Answers: 0   Comments: 2

let f(x)=∫_0 ^(π/2) (dθ/(x +cos^2 θ)) with x>0 . 1) calculate f(x) and f^′ (x) 2) find f^((n)) (x) and f^((n)) (0) 3) developp f at integr serie.

$${let}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{d}\theta}{{x}\:\:+{cos}^{\mathrm{2}} \theta}\:\:{with}\:{x}>\mathrm{0}\:. \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right)\:{and}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$

Question Number 40615    Answers: 1   Comments: 2

Question Number 40610    Answers: 1   Comments: 0

Question Number 40594    Answers: 1   Comments: 1

Question Number 40587    Answers: 0   Comments: 1

find ∫e^x lnx dx

$$\boldsymbol{\mathrm{find}}\:\int\boldsymbol{\mathrm{e}}^{\boldsymbol{{x}}} \boldsymbol{\mathrm{ln}{x}}\:\boldsymbol{\mathrm{d}{x}} \\ $$

Question Number 40583    Answers: 2   Comments: 0

2^(√x) = x find x

$$\mathrm{2}^{\sqrt{{x}}} =\:{x} \\ $$$${find}\:{x} \\ $$

Question Number 40581    Answers: 1   Comments: 2

Question Number 40580    Answers: 0   Comments: 3

find ∫_0 ^∞ ((ln(1+ix))/(x^3 +8))dx

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left(\mathrm{1}+{ix}\right)}{{x}^{\mathrm{3}} \:+\mathrm{8}}{dx} \\ $$$$ \\ $$

Question Number 40591    Answers: 1   Comments: 1

  Pg 1606      Pg 1607      Pg 1608      Pg 1609      Pg 1610      Pg 1611      Pg 1612      Pg 1613      Pg 1614      Pg 1615   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com