Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1610

Question Number 42133    Answers: 1   Comments: 0

Let a,b,cε R such that a+2b+c=4. Find maximum value of (ab+bc+ca).

$$\mathrm{Let}\:\mathrm{a},\mathrm{b},\mathrm{c}\epsilon\:\mathrm{R}\:\mathrm{such}\:\mathrm{that}\:\mathrm{a}+\mathrm{2b}+\mathrm{c}=\mathrm{4}. \\ $$$$\mathrm{Find}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\left(\mathrm{ab}+\mathrm{bc}+\mathrm{ca}\right). \\ $$

Question Number 42131    Answers: 1   Comments: 1

Determine the total translational energy of two litres of oxygen gas held at a temperature of 0°C and pressure of one atmosphere.

$${Determine}\:{the}\:{total}\:{translational} \\ $$$${energy}\:{of}\:{two}\:{litres}\:{of}\:{oxygen}\:{gas} \\ $$$${held}\:{at}\:{a}\:{temperature}\:{of}\:\mathrm{0}°{C}\:{and}\: \\ $$$${pressure}\:{of}\:{one}\:{atmosphere}. \\ $$$$ \\ $$

Question Number 42128    Answers: 0   Comments: 2

Calculate the density of 1 mole of oxygen at a pressure of 4×10^4 Nm^(−2) and temperature of 273.2K.

$${Calculate}\:{the}\:\:{density}\:{of}\:\mathrm{1}\:{mole}\:{of} \\ $$$${oxygen}\:{at}\:{a}\:{pressure}\:{of}\:\mathrm{4}×\mathrm{10}^{\mathrm{4}} {Nm}^{−\mathrm{2}} \\ $$$${and}\:{temperature}\:{of}\:\mathrm{273}.\mathrm{2}{K}. \\ $$

Question Number 42125    Answers: 0   Comments: 6

If a petrol tank costs σ2000.00 to fill it up at 10°C,how much extra must I pay to fill up the tank at 50°C if the petrol costs σ50.00 per litre and its cubic expansivity is 9.5×10^(−4) K^(−1) ?

$${If}\:{a}\:{petrol}\:{tank}\:{costs}\:\sigma\mathrm{2000}.\mathrm{00}\:{to} \\ $$$${fill}\:{it}\:{up}\:{at}\:\mathrm{10}°{C},{how}\:{much}\:{extra} \\ $$$${must}\:{I}\:{pay}\:{to}\:{fill}\:{up}\:{the}\:{tank}\:{at}\:\mathrm{50}°{C} \\ $$$${if}\:{the}\:{petrol}\:{costs}\:\sigma\mathrm{50}.\mathrm{00}\:{per}\:{litre} \\ $$$${and}\:{its}\:{cubic}\:{expansivity}\:{is} \\ $$$$\mathrm{9}.\mathrm{5}×\mathrm{10}^{−\mathrm{4}} {K}^{−\mathrm{1}} ? \\ $$

Question Number 42118    Answers: 1   Comments: 0

x−4=−(1/x) then . prove x^4 −194=−(1/x^4 )

$$\mathrm{x}−\mathrm{4}=−\frac{\mathrm{1}}{\mathrm{x}}\:\mathrm{then}\:.\:\mathrm{prove}\:\mathrm{x}^{\mathrm{4}} −\mathrm{194}=−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{4}} } \\ $$

Question Number 42112    Answers: 1   Comments: 1

Question Number 42110    Answers: 1   Comments: 1

Question Number 42107    Answers: 0   Comments: 0

Question Number 42106    Answers: 1   Comments: 0

Question Number 42098    Answers: 0   Comments: 1

let S_(n,p) =Σ_(k=1) ^n (1/(√(k+p))) find a equivalent of S_(n,p) when n→+∞ p integr ≥1.

$${let}\:{S}_{{n},{p}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\sqrt{{k}+{p}}} \\ $$$${find}\:{a}\:{equivalent}\:{of}\:{S}_{{n},{p}} \:{when}\:{n}\rightarrow+\infty \\ $$$${p}\:{integr}\:\geqslant\mathrm{1}. \\ $$

Question Number 42096    Answers: 0   Comments: 2

let S_n =Σ_(k=1) ^n (1/(√k)) find a ewuivalent of S_n when n→+∞

$${let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\sqrt{{k}}} \\ $$$${find}\:{a}\:{ewuivalent}\:\:{of}\:\:{S}_{{n}} \:{when}\:{n}\rightarrow+\infty \\ $$

Question Number 42094    Answers: 1   Comments: 0

If 7 points out of 12 are in the same straight line, then the number of triangles formed is

$$\mathrm{If}\:\:\mathrm{7}\:\mathrm{points}\:\mathrm{out}\:\mathrm{of}\:\:\mathrm{12}\:\mathrm{are}\:\mathrm{in}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{straight}\:\mathrm{line},\:\mathrm{then}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\: \\ $$$$\mathrm{triangles}\:\mathrm{formed}\:\mathrm{is} \\ $$

Question Number 42089    Answers: 0   Comments: 1

let f(x) =Σ_(n=1) ^∞ ((sin(nx))/n) x^n with −1<x<1 1) find a explicite form of f(x) 2) find the value of Σ_(n=1) ^∞ (1/(n2^n ))sin((n/2))

$${let}\:{f}\left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{sin}\left({nx}\right)}{{n}}\:{x}^{{n}} \:\:\:\:\:{with}\:\:−\mathrm{1}<{x}<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:\:{a}\:{explicite}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}\mathrm{2}^{{n}} }{sin}\left(\frac{{n}}{\mathrm{2}}\right) \\ $$

Question Number 42088    Answers: 1   Comments: 1

find ∫ (1+(1/x^2 ))ln(1−(1/x))dx .

$${find}\:\:\:\:\:\int\:\:\:\:\:\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){ln}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right){dx}\:\:. \\ $$

Question Number 42087    Answers: 0   Comments: 0

find ∫ ((x dx)/(x(√(1+x^2 )) +(1+x^2 )(√x)))

$${find}\:\:\:\:\int\:\:\:\:\:\:\:\:\frac{{x}\:{dx}}{{x}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:+\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{{x}}} \\ $$

Question Number 42086    Answers: 1   Comments: 0

let f(x) =∫_0 ^2 ((ch(t))/(2xsh(t) +1)) dt 1) find a simple form of f(x) 2) calculate ∫_0 ^2 ((ch(t))/(1+sh(t)))dt 3) calculate ∫_0 ^2 ((ch(t))/(3sh(t) +1))dt .

$${let}\:\:\:\:{f}\left({x}\right)\:\:=\int_{\mathrm{0}} ^{\mathrm{2}} \:\:\:\:\:\frac{{ch}\left({t}\right)}{\mathrm{2}{xsh}\left({t}\right)\:+\mathrm{1}}\:{dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}} \:\:\:\:\frac{{ch}\left({t}\right)}{\mathrm{1}+{sh}\left({t}\right)}{dt} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}} \:\:\:\:\frac{{ch}\left({t}\right)}{\mathrm{3}{sh}\left({t}\right)\:+\mathrm{1}}{dt}\:. \\ $$

Question Number 42085    Answers: 1   Comments: 1

calculate ∫_1 ^(+∞) ((2x+1)/(3 +(x+1)^3 ))dx

$${calculate}\:\:\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{\mathrm{2}{x}+\mathrm{1}}{\mathrm{3}\:+\left({x}+\mathrm{1}\right)^{\mathrm{3}} }{dx}\: \\ $$

Question Number 42083    Answers: 0   Comments: 0

calculate ∫_0 ^1 ((2x+1)/(3+(1+x)^3 ))dx

$${calculate}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\:\frac{\mathrm{2}{x}+\mathrm{1}}{\mathrm{3}+\left(\mathrm{1}+{x}\right)^{\mathrm{3}} }{dx} \\ $$

Question Number 42058    Answers: 1   Comments: 0

Given that x^ = ((Σxi)/n_1 ) and y^ = ((Σyi)/n_2 ) show that x_c ^ = ((n_1 (x^ ) + n_2 (y^ ))/(n_1 +n_2 ))

$${Given}\:{that}\:\:\bar {\mathrm{x}}=\:\frac{\Sigma\mathrm{x}{i}}{{n}_{\mathrm{1}} }\:\:\:{and}\:\bar {{y}}=\:\frac{\Sigma{yi}}{{n}_{\mathrm{2}} } \\ $$$${show}\:{that}\: \\ $$$$\:\bar {\mathrm{x}}_{{c}} =\:\frac{{n}_{\mathrm{1}} \left(\bar {\mathrm{x}}\right)\:+\:{n}_{\mathrm{2}} \left(\bar {{y}}\right)}{{n}_{\mathrm{1}} +{n}_{\mathrm{2}} } \\ $$

Question Number 42054    Answers: 1   Comments: 1

Question Number 42093    Answers: 1   Comments: 0

If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, then the rank of the permutation debac is

$$\mathrm{If}\:\mathrm{the}\:\mathrm{permutations}\:\mathrm{of}\:{a},\:{b},\:{c},\:{d},\:{e}\:\mathrm{taken} \\ $$$$\mathrm{all}\:\mathrm{together}\:\mathrm{be}\:\mathrm{written}\:\mathrm{down}\:\mathrm{in}\: \\ $$$$\mathrm{alphabetical}\:\mathrm{order}\:\mathrm{as}\:\mathrm{in}\:\mathrm{dictionary} \\ $$$$\mathrm{and}\:\mathrm{numbered},\:\mathrm{then}\:\mathrm{the}\:\mathrm{rank}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{permutation}\:\:{debac}\:\:\mathrm{is} \\ $$

Question Number 42045    Answers: 0   Comments: 2

i have some thing to say...in this platform several people/students/others post questions..others take promt action to solve the problems.. after the problem got solved..the person/students who post questions never attend or see the answer even do not clarify whether the answer is right or wrong...or whether he/she got understood the method...so pls show your courtsey otherwise your problem remain a problem and nobody bother to solve it...Than you all

$${i}\:{have}\:{some}\:{thing}\:{to}\:{say}...{in}\:{this}\:{platform}\:\:{several} \\ $$$${people}/{students}/{others}\:{post}\:{questions}..{others} \\ $$$${take}\:{promt}\:{action}\:{to}\:{solve}\:{the}\:{problems}.. \\ $$$${after}\:{the}\:{problem}\:{got}\:{solved}..{the}\:{person}/{students} \\ $$$${who}\:{post}\:{questions}\:{never}\:{attend}\:{or}\:{see}\:{the}\:{answer} \\ $$$${even}\:{do}\:{not}\:{clarify}\:{whether}\:{the}\:{answer}\:{is}\:{right} \\ $$$${or}\:{wrong}...{or}\:{whether}\:{he}/{she}\:{got}\:{understood}\:{the} \\ $$$${method}...{so}\:{pls}\:{show}\:{your}\:{courtsey}\:{otherwise} \\ $$$${your}\:{problem}\:{remain}\:{a}\:{problem}\:{and}\:{nobody}\:{bother} \\ $$$${to}\:{solve}\:{it}...{Than}\:{you}\:{all} \\ $$

Question Number 42036    Answers: 0   Comments: 13

State the phase shift, the amplitude and draw the graph. (a) g(θ) = (3/4) sin(2θ + π) (b) f(θ) = 1 + (3/4) sin(2θ + π) (c) f(θ) = 4θ

$$\mathrm{State}\:\mathrm{the}\:\mathrm{phase}\:\mathrm{shift},\:\:\mathrm{the}\:\mathrm{amplitude}\:\mathrm{and}\:\mathrm{draw}\:\mathrm{the}\:\mathrm{graph}. \\ $$$$\left(\mathrm{a}\right)\:\:\mathrm{g}\left(\theta\right)\:=\:\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{sin}\left(\mathrm{2}\theta\:+\:\pi\right) \\ $$$$\left(\mathrm{b}\right)\:\:\mathrm{f}\left(\theta\right)\:=\:\mathrm{1}\:+\:\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{sin}\left(\mathrm{2}\theta\:+\:\pi\right) \\ $$$$\left(\mathrm{c}\right)\:\:\mathrm{f}\left(\theta\right)\:=\:\mathrm{4}\theta \\ $$$$ \\ $$

Question Number 42030    Answers: 4   Comments: 1

x+(1/x)=5 x^5 +(1/x^5 )=?

$$\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}=\mathrm{5}\:\:\:\:\mathrm{x}^{\mathrm{5}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{5}} }=? \\ $$

Question Number 42029    Answers: 1   Comments: 0

Question Number 42025    Answers: 0   Comments: 2

A man,near point is 90cm from his eyes and his far point is 3cm. What type of eye defect has he? If he is to read a book at 25cm and see distant object clearly,what type and power of lenses will you recommend for him?

$${A}\:{man},{near}\:{point}\:{is}\:\mathrm{90}{cm}\:{from} \\ $$$${his}\:{eyes}\:{and}\:{his}\:{far}\:{point}\:{is}\:\mathrm{3}{cm}. \\ $$$${What}\:{type}\:{of}\:{eye}\:{defect}\:{has}\:{he}? \\ $$$${If}\:{he}\:{is}\:{to}\:{read}\:{a}\:{book}\:{at}\:\mathrm{25}{cm}\:{and} \\ $$$${see}\:{distant}\:{object}\:{clearly},{what}\:{type} \\ $$$${and}\:{power}\:{of}\:{lenses}\:{will}\:{you} \\ $$$${recommend}\:{for}\:{him}? \\ $$$$ \\ $$

  Pg 1605      Pg 1606      Pg 1607      Pg 1608      Pg 1609      Pg 1610      Pg 1611      Pg 1612      Pg 1613      Pg 1614   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com