Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1609

Question Number 40886    Answers: 0   Comments: 0

prove that ∫_0 ^1 ((t^(2p+1) ln(t))/(t^2 −1))dt =(π^2 /(24)) −(1/4)Σ_(k=1) ^p (1/k^2 )

provethat01t2p+1ln(t)t21dt=π22414k=1p1k2

Question Number 40885    Answers: 0   Comments: 1

prove that 1) ∫_0 ^1 ((t^p ln(t))/(t−1))dt =(π^2 /6) −Σ_(k=1) ^p (1/k^2 ) 2) ∫_0 ^1 ((t^(2p) ln(t))/(t^2 −1))dt =(π^2 /8) −Σ_(k=0) ^(p−1) (1/((2k+1)^2 ))

provethat1)01tpln(t)t1dt=π26k=1p1k22)01t2pln(t)t21dt=π28k=0p11(2k+1)2

Question Number 40884    Answers: 2   Comments: 0

1) fond ∫_0 ^1 ((ln(t))/(t^2 −1))dt 2) find ∫_0 ^1 ((ln(t))/(t^4 −1))dt

1)fond01ln(t)t21dt2)find01ln(t)t41dt

Question Number 40883    Answers: 1   Comments: 0

find ∫_0 ^∞ (t^p /(e^t −1))dt with p∈N^★

find0tpet1dtwithpN

Question Number 40882    Answers: 0   Comments: 0

1)prove that ∀n≥2(n inyegr) x^(2n) −1=(x−1)(x+1)Π_(k=1) ^(n−1) (x^2 −2cos(((kπ)/n))x+1) 2)find the value of ∫_0 ^π ln(x^2 −2xcost +1)dt

1)provethatn2(ninyegr)x2n1=(x1)(x+1)k=1n1(x22cos(kπn)x+1)2)findthevalueof0πln(x22xcost+1)dt

Question Number 40880    Answers: 0   Comments: 0

prove that Σ_(k=n) ^∞ (1/k^α ) ∼ (1/((α−1)n^(α−1) ))with α>1

provethatk=n1kα1(α1)nα1withα>1

Question Number 40878    Answers: 0   Comments: 0

let u_0 >0 and ∀n∈N u_(n+1) =u_n +(1/u_n ) 1) prove that (u_n )is increasing and lim u_n =+∞ 2)by consideringthe functionϕ(t)=(1/(2t+x)) prove that ∀n∈N Σ_(k=1) ^n (1/(2k+x)) ≤(1/2)ln(1+((2n)/x)) 3)find a equivalent of u_n (n→+∞)

letu0>0andnNun+1=un+1un1)provethat(un)isincreasingandlimun=+2)byconsideringthefunctionφ(t)=12t+xprovethatnNk=1n12k+x12ln(1+2nx)3)findaequivalentofun(n+)

Question Number 40876    Answers: 0   Comments: 0

prove by recurrence that Σ_(k=1) ^n k^4 =((n(n+1)(2n+1)(3n^2 +3n−1))/(30))

provebyrecurrencethatk=1nk4=n(n+1)(2n+1)(3n2+3n1)30

Question Number 40875    Answers: 1   Comments: 0

2a sin(((25)/a)) − 51 = 0, find a

2asin(25a)51=0,finda

Question Number 40874    Answers: 0   Comments: 0

Question Number 40873    Answers: 1   Comments: 0

If a^3 +b^3 =0, prove that log (a+b)=(1/2)(log a +log b +log 3) [given a+b≠0]

Ifa3+b3=0,provethatlog(a+b)=12(loga+logb+log3)[givena+b0]

Question Number 40872    Answers: 1   Comments: 2

If a^3 +b^3 =0, prove that log (a+b)=(1/2)(log a +log b +log 3) [given a+b≠0]

Ifa3+b3=0,provethatlog(a+b)=12(loga+logb+log3)[givena+b0]

Question Number 40870    Answers: 1   Comments: 1

fnd ∫ (1+(1/x^2 ))arctan(x−(1/x))dx .

fnd(1+1x2)arctan(x1x)dx.

Question Number 40868    Answers: 0   Comments: 4

calculate ∫_0 ^(π/2) (x/(sinx))dx .

calculate0π2xsinxdx.

Question Number 40867    Answers: 0   Comments: 1

Question Number 40857    Answers: 1   Comments: 2

Question Number 40847    Answers: 1   Comments: 0

If the coordinate of the points A and B be (3,3) and (7,6) then the length of the portion of the line AB intercepted between the axes is (a) (5/4) (b) ((√(10))/4) (c) ((√(13))/3) (d) none

IfthecoordinateofthepointsAandBbe(3,3)and(7,6)thenthelengthoftheportionofthelineABinterceptedbetweentheaxesis(a)54(b)104(c)133(d)none

Question Number 40830    Answers: 0   Comments: 1

find ∫ (√(2+tan^2 t))dt

find2+tan2tdt

Question Number 40829    Answers: 1   Comments: 0

let f(t) = ∫_0 ^∞ ((arctan(tx))/(x^3 +8))dx 1)find a simple form of f(t) 2)calculate ∫_0 ^∞ ((arctan(x))/(x^3 +8))dx .

letf(t)=0arctan(tx)x3+8dx1)findasimpleformoff(t)2)calculate0arctan(x)x3+8dx.

Question Number 40826    Answers: 1   Comments: 0

Question Number 40823    Answers: 0   Comments: 1

calculate ∫_0 ^(π/2) (√(cos^2 x +3sin^2 x))dx

calculate0π2cos2x+3sin2xdx

Question Number 40822    Answers: 2   Comments: 0

Question Number 40818    Answers: 1   Comments: 0

Two large parallel metal plates carrying opposite charges are seperated by a distance of 0.2m,and the potential difference between them is 0.5KV. (a)Calculate the magnitude of the uniform electric field between them. (b)Also calculate the workdone by this field on a charge of 4.0×10^(−9) C when it moves from the plate of higher potential to that of lower potential.

Twolargeparallelmetalplatescarryingoppositechargesareseperatedbyadistanceof0.2m,andthepotentialdifferencebetweenthemis0.5KV.(a)Calculatethemagnitudeoftheuniformelectricfieldbetweenthem.(b)Alsocalculatetheworkdonebythisfieldonachargeof4.0×109Cwhenitmovesfromtheplateofhigherpotentialtothatoflowerpotential.

Question Number 40817    Answers: 1   Comments: 0

An electric field of 2.66KV/m,and a magnetic field of 1.20T,act on a moving electron.Calculate the speed of the electron if the resultant force due to both fields is zero.

Anelectricfieldof2.66KV/m,andamagneticfieldof1.20T,actonamovingelectron.Calculatethespeedoftheelectroniftheresultantforceduetobothfieldsiszero.

Question Number 40816    Answers: 0   Comments: 0

An electric field of 2.66KV/m,and a magnetic field of 1.20T,act on a moving electron.Calculate the speed of the electron if the resultant force due to both fields is zero.

Anelectricfieldof2.66KV/m,andamagneticfieldof1.20T,actonamovingelectron.Calculatethespeedoftheelectroniftheresultantforceduetobothfieldsiszero.

Question Number 40815    Answers: 1   Comments: 0

Calculate the magnetic force,F_b on an electron with velocity,v=20j^ m/s which enters a magnetic field of flux density,B=0.6k^ T

Calculatethemagneticforce,Fbonanelectronwithvelocity,v=20jm^/swhichentersamagneticfieldoffluxdensity,B=0.6kT^

  Pg 1604      Pg 1605      Pg 1606      Pg 1607      Pg 1608      Pg 1609      Pg 1610      Pg 1611      Pg 1612      Pg 1613   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com