Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1609

Question Number 47740    Answers: 2   Comments: 0

∫(dx/(x(x+1)(x+2)(x+3)...(x+n)))

$$\int\frac{{dx}}{{x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left({x}+\mathrm{3}\right)...\left({x}+{n}\right)} \\ $$

Question Number 47697    Answers: 1   Comments: 1

Question Number 47677    Answers: 0   Comments: 3

∫x^(x ) dx=

$$\int\mathrm{x}^{\mathrm{x}\:} \mathrm{dx}= \\ $$

Question Number 47675    Answers: 2   Comments: 0

A particle of mass 4kg was at rest a a point of position vector i +4j. A force F was applied to it and it moved at a velocity of (3i + 7j)ms^(−1) after a time of 5seconds. Find a) the magnitude of F b) The speed at which it moves,Hence, c) The distance it covered.

$${A}\:{particle}\:{of}\:{mass}\:\mathrm{4}{kg}\:{was}\:{at}\:{rest}\:{a}\:{a}\:{point}\:{of}\:{position}\:{vector} \\ $$$${i}\:+\mathrm{4}{j}.\:{A}\:{force}\:{F}\:{was}\:{applied}\:{to}\:{it}\:{and}\:{it}\:{moved}\:{at}\:{a}\:{velocity} \\ $$$${of}\:\left(\mathrm{3}{i}\:+\:\mathrm{7}{j}\right){ms}^{−\mathrm{1}} \:\:\:{after}\:{a}\:{time}\:{of}\:\:\mathrm{5}{seconds}.\:{Find}\: \\ $$$$\left.{a}\right)\:{the}\:{magnitude}\:{of}\:{F} \\ $$$$\left.{b}\right)\:{The}\:{speed}\:{at}\:{which}\:{it}\:{moves},{Hence}, \\ $$$$\left.{c}\right)\:{The}\:{distance}\:{it}\:{covered}. \\ $$$$ \\ $$$$ \\ $$

Question Number 47659    Answers: 2   Comments: 0

Question Number 47657    Answers: 1   Comments: 7

Question Number 47656    Answers: 1   Comments: 1

A square is divided into 9 identical smaller squares.Six identical balls are to be placed in these smaller squares such that each of the three rows gets at least one ball(one ball in one square only).In how many different ways can this be done? a)91 b)51 c)81 d)41

$${A}\:{square}\:{is}\:{divided}\:{into}\:\mathrm{9}\:{identical} \\ $$$${smaller}\:{squares}.{Six}\:{identical}\:{balls} \\ $$$${are}\:{to}\:{be}\:{placed}\:{in}\:{these}\:{smaller}\: \\ $$$${squares}\:{such}\:{that}\:{each}\:{of}\:{the}\:{three} \\ $$$${rows}\:{gets}\:{at}\:{least}\:{one}\:{ball}\left({one}\right. \\ $$$$\left.{ball}\:{in}\:{one}\:{square}\:{only}\right).{In}\:{how} \\ $$$${many}\:{different}\:{ways}\:{can}\:{this}\:{be} \\ $$$${done}? \\ $$$$\left.{a}\left.\right)\left.\mathrm{9}\left.\mathrm{1}\:{b}\right)\mathrm{51}\:{c}\right)\mathrm{81}\:{d}\right)\mathrm{41} \\ $$$$ \\ $$

Question Number 47651    Answers: 1   Comments: 1

calculate A_n =∫_0 ^1 sin([nx])e^(−2x) dx with n integr natural .

$${calculate}\:\:{A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{sin}\left(\left[{nx}\right]\right){e}^{−\mathrm{2}{x}} {dx}\:{with}\:{n} \\ $$$${integr}\:{natural}\:. \\ $$

Question Number 47646    Answers: 1   Comments: 2

Question Number 47641    Answers: 0   Comments: 0

E=(E_1 ^2 +E_2 ^2 +2E_1 E_2 cos2θ)^(1/2) full explanation

$$\mathrm{E}=\left(\mathrm{E}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{E}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{2E}_{\mathrm{1}} \mathrm{E}_{\mathrm{2}} \mathrm{cos2}\theta\right)^{\mathrm{1}/\mathrm{2}} \\ $$$$\mathrm{full}\:\mathrm{explanation} \\ $$

Question Number 47638    Answers: 0   Comments: 3

∫_0 ^π (√((1+cos2x)/2)) dx

$$\int_{\mathrm{0}} ^{\pi} \sqrt{\frac{\mathrm{1}+{cos}\mathrm{2}{x}}{\mathrm{2}}}\:\:{dx} \\ $$

Question Number 47637    Answers: 1   Comments: 2

∫_0 ^1 sin([x]+[2x])dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} {sin}\left(\left[{x}\right]+\left[\mathrm{2}{x}\right]\right){dx} \\ $$

Question Number 47639    Answers: 1   Comments: 0

derivation or proof or full explanation of R=(R_1 ^2 +R_2 ^2 +2R_1 .R_2 cosθ)^(1/2)

$$\boldsymbol{\mathrm{derivation}}\:\boldsymbol{\mathrm{or}}\:\boldsymbol{\mathrm{proof}}\:\boldsymbol{\mathrm{or}}\:\boldsymbol{\mathrm{full}}\:\boldsymbol{\mathrm{explanation}} \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{R}}=\left(\boldsymbol{\mathrm{R}}_{\mathrm{1}} ^{\mathrm{2}} +\boldsymbol{\mathrm{R}}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{2R}_{\mathrm{1}} .\mathrm{R}_{\mathrm{2}} \mathrm{cos}\theta\right)^{\mathrm{1}/\mathrm{2}} \\ $$

Question Number 47628    Answers: 1   Comments: 0

If the first term and n^(th) term of G.P., are a and b respectively, p is the product of n terms. Prove that p^2 = (ab)^n .

$$\mathrm{If}\:\mathrm{the}\:\mathrm{first}\:\mathrm{term}\:\mathrm{and}\:\mathrm{n}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{of}\:\mathrm{G}.\mathrm{P}.,\:\:\mathrm{are}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{respectively},\: \\ $$$$\mathrm{p}\:\mathrm{is}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{n}\:\mathrm{terms}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{p}^{\mathrm{2}} \:=\:\left(\mathrm{ab}\right)^{\mathrm{n}} . \\ $$$$ \\ $$$$ \\ $$

Question Number 47627    Answers: 0   Comments: 0

Could someone explain me how cellular automata theory can be used in the bioligical field in relation to the spread of disease and/or cancer cells ? Thank you very much !

$$\mathrm{Could}\:\mathrm{someone}\:\mathrm{explain}\:\mathrm{me}\:\mathrm{how}\:\mathrm{cellular} \\ $$$$\mathrm{automata}\:\mathrm{theory}\:\mathrm{can}\:\mathrm{be}\:\mathrm{used}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{bioligical}\:\mathrm{field}\:\mathrm{in}\:\mathrm{relation}\:\mathrm{to}\:\mathrm{the}\:\mathrm{spread} \\ $$$$\mathrm{of}\:\mathrm{disease}\:\mathrm{and}/\mathrm{or}\:\mathrm{cancer}\:\mathrm{cells}\:? \\ $$$${Thank}\:{you}\:{very}\:{much}\:! \\ $$

Question Number 47626    Answers: 0   Comments: 0

thanks sir

$$\mathrm{thanks}\:\mathrm{sir} \\ $$

Question Number 47624    Answers: 1   Comments: 0

Solve the d.e using method of variation of parameter. (d^2 y/dx^2 )+3(dy/dx)+2y=sin(e^x )

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{d}.\mathrm{e}\:\mathrm{using}\:\mathrm{method}\:\mathrm{of}\:\mathrm{variation} \\ $$$$\mathrm{of}\:\mathrm{parameter}. \\ $$$$ \\ $$$$\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }+\mathrm{3}\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{2y}=\mathrm{sin}\left(\mathrm{e}^{\mathrm{x}} \right) \\ $$

Question Number 47623    Answers: 0   Comments: 0

Solve the d.e using method of variation of parameter. (d^2 y/dx^2 )+3(dy/dx)+2y=sin(e^x )

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{d}.\mathrm{e}\:\mathrm{using}\:\mathrm{method}\:\mathrm{of}\:\mathrm{variation} \\ $$$$\mathrm{of}\:\mathrm{parameter}. \\ $$$$ \\ $$$$\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }+\mathrm{3}\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{2y}=\mathrm{sin}\left(\mathrm{e}^{\mathrm{x}} \right) \\ $$

Question Number 47613    Answers: 1   Comments: 0

1(8/9)=((2x−1)/5) sir plz help me

$$\mathrm{1}\frac{\mathrm{8}}{\mathrm{9}}=\frac{\mathrm{2x}−\mathrm{1}}{\mathrm{5}}\:\:\:\mathrm{sir}\:\mathrm{plz}\:\mathrm{help}\:\mathrm{me} \\ $$

Question Number 47621    Answers: 1   Comments: 1

Find locus of point P from which tangents PA & PB to circles x^2 +y^2 =a^2 and x^2 +y^2 =b^2 respectively are perpendicular.

$${Find}\:{locus}\:{of}\:{point}\:{P}\:{from}\:{which} \\ $$$${tangents}\:{PA}\:\&\:{PB}\:{to}\:{circles}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$${and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={b}^{\mathrm{2}} \:{respectively}\:{are}\:{perpendicular}. \\ $$

Question Number 47607    Answers: 1   Comments: 1

∫_a ^b ((∣x∣)/x)dx

$$\int_{{a}} ^{{b}} \frac{\mid{x}\mid}{{x}}{dx} \\ $$

Question Number 47801    Answers: 1   Comments: 0

An object starts from rest and moves with a velocity of (3i+4j)ms^(−1) . It covers a distance of 400km.Find a) its acceleration b) the time taken to cover the distance 400km.

$${An}\:{object}\:{starts}\:{from}\:{rest}\:{and}\:{moves}\:{with}\:{a}\:{velocity}\:{of}\: \\ $$$$\left(\mathrm{3}{i}+\mathrm{4}{j}\right){ms}^{−\mathrm{1}} .\:{It}\:{covers}\:{a}\:{distance}\:{of}\:\mathrm{400}{km}.{Find}\: \\ $$$$\left.{a}\right)\:{its}\:{acceleration} \\ $$$$\left.{b}\right)\:{the}\:{time}\:{taken}\:{to}\:{cover}\:{the}\:{distance}\:\mathrm{400}{km}. \\ $$

Question Number 47595    Answers: 0   Comments: 3

Question Number 47593    Answers: 0   Comments: 0

Which of the following statements are/is true?

$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{statements}\: \\ $$$$\mathrm{are}/\mathrm{is}\:\mathrm{true}? \\ $$

Question Number 47590    Answers: 1   Comments: 1

f(x)=e^x g(x)=x^2 (f+g)(x)=? (f×x)(x)=? (f/g)(x)=?

$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{e}^{\mathrm{x}} \: \\ $$$$\mathrm{g}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{2}} \\ $$$$\left(\mathrm{f}+\mathrm{g}\right)\left(\mathrm{x}\right)=? \\ $$$$\left(\mathrm{f}×\mathrm{x}\right)\left(\mathrm{x}\right)=? \\ $$$$\left(\mathrm{f}/\mathrm{g}\right)\left(\mathrm{x}\right)=? \\ $$

Question Number 47586    Answers: 1   Comments: 0

Given the function f(θ)= cos2θ − sinθ. (for 0°≤θ≤π) plot the graph for intervals of (π/6). hence find the value of cos2θ=sinθ.

$${Given}\:{the}\:{function}\:{f}\left(\theta\right)=\:{cos}\mathrm{2}\theta\:−\:{sin}\theta.\:\left({for}\:\mathrm{0}°\leqslant\theta\leqslant\pi\right) \\ $$$${plot}\:{the}\:{graph}\:{for}\:\:{intervals}\:{of}\:\frac{\pi}{\mathrm{6}}. \\ $$$${hence}\:{find}\:{the}\:{value}\:{of}\:{cos}\mathrm{2}\theta={sin}\theta. \\ $$

  Pg 1604      Pg 1605      Pg 1606      Pg 1607      Pg 1608      Pg 1609      Pg 1610      Pg 1611      Pg 1612      Pg 1613   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com