Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1608

Question Number 45208    Answers: 0   Comments: 1

Question Number 45204    Answers: 0   Comments: 2

Question Number 45201    Answers: 0   Comments: 6

find ∫ (dx/(√(1+x^3 )))

$${find}\:\int\:\:\frac{{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }} \\ $$

Question Number 45206    Answers: 0   Comments: 1

Question Number 45205    Answers: 2   Comments: 0

Question Number 45192    Answers: 0   Comments: 0

To the developer, of tinkutara; Sir, since yesterday the app crashes when i go for any page other than the main ′sort by question id page′, please help, my phone is 2G compatible android old version, but the app had been running all nice before yesterday night.

$${To}\:{the}\:{developer},\:{of}\:{tinkutara}; \\ $$$${Sir},\:{since}\:{yesterday}\:{the} \\ $$$${app}\:{crashes}\:{when}\:{i}\:{go}\:{for} \\ $$$${any}\:{page}\:{other}\:{than}\:{the} \\ $$$${main}\:'{sort}\:{by}\:{question}\:{id}\:{page}', \\ $$$${please}\:{help},\:{my}\:{phone}\:{is}\:\mathrm{2}{G} \\ $$$${compatible}\:{android}\:{old}\:{version}, \\ $$$${but}\:{the}\:{app}\:{had}\:{been}\:{running}\:{all} \\ $$$${nice}\:{before}\:{yesterday}\:{night}. \\ $$

Question Number 45187    Answers: 1   Comments: 6

Question Number 45173    Answers: 0   Comments: 3

Question Number 45232    Answers: 1   Comments: 1

calculate ∫_0 ^1 ln(x)ln(1+x)dx .

$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}+{x}\right){dx}\:. \\ $$

Question Number 45231    Answers: 2   Comments: 1

find ∫ (√((x−1)(3−x)))dx

$${find}\:\int\:\sqrt{\left({x}−\mathrm{1}\right)\left(\mathrm{3}−{x}\right)}{dx} \\ $$

Question Number 45225    Answers: 1   Comments: 0

solve for x 9^(x+1) +3^(2x+1) =36

$$\mathrm{solve}\:\mathrm{for}\:{x} \\ $$$$\mathrm{9}^{{x}+\mathrm{1}} +\mathrm{3}^{\mathrm{2}{x}+\mathrm{1}} =\mathrm{36} \\ $$

Question Number 45224    Answers: 1   Comments: 0

Question Number 45221    Answers: 1   Comments: 0

Find the divisors ; if any ; of 16000001

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{divisors}\:; \\ $$$$\mathrm{if}\:\mathrm{any}\:;\:\mathrm{of}\:\mathrm{16000001} \\ $$

Question Number 45155    Answers: 2   Comments: 1

Question Number 45151    Answers: 0   Comments: 2

Question Number 45166    Answers: 1   Comments: 0

Question Number 45165    Answers: 1   Comments: 0

Question Number 45164    Answers: 0   Comments: 6

Question Number 45163    Answers: 0   Comments: 0

Evaluate ∫_0 ^∞ ∫_0 ^t e^(−t) ((sinu)/u)du dt

$$\mathrm{Evaluate}\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\mathrm{t}} \mathrm{e}^{−\mathrm{t}} \frac{\mathrm{sinu}}{\mathrm{u}}\mathrm{du}\:\mathrm{dt} \\ $$

Question Number 45162    Answers: 0   Comments: 0

L{(t^2 +3t+2)H(t−1)+((sin 2t)/t)δ(t−(π/4))}

$$\mathrm{L}\left\{\left(\mathrm{t}^{\mathrm{2}} +\mathrm{3t}+\mathrm{2}\right)\mathrm{H}\left(\mathrm{t}−\mathrm{1}\right)+\frac{\mathrm{sin}\:\mathrm{2t}}{\mathrm{t}}\delta\left(\mathrm{t}−\frac{\pi}{\mathrm{4}}\right)\right\} \\ $$

Question Number 45160    Answers: 0   Comments: 0

L{(√(1+sin t))+∫_0 ^t cosht cost dt}

$$\mathrm{L}\left\{\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{t}}+\int_{\mathrm{0}} ^{\mathrm{t}} \mathrm{cosht}\:\mathrm{cost}\:\mathrm{dt}\right\} \\ $$

Question Number 45158    Answers: 0   Comments: 1

∫((e^(2x) −e^x +1)/((e^x sinx+cosx)(e^x cosx−sinx)))dx =?

$$\:\:\int\frac{{e}^{\mathrm{2}{x}} −{e}^{{x}} +\mathrm{1}}{\left({e}^{{x}} {sinx}+{cosx}\right)\left({e}^{{x}} {cosx}−{sinx}\right)}{dx}\:=? \\ $$

Question Number 45129    Answers: 1   Comments: 1

Question Number 45128    Answers: 1   Comments: 1

Question Number 45122    Answers: 0   Comments: 1

Question Number 45117    Answers: 1   Comments: 3

Prove that ∫_0 ^1 ((x^a −1)/(log x)) dx = log (a+1).

$${Prove}\:{that}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{{a}} −\mathrm{1}}{\mathrm{log}\:{x}}\:{dx}\:=\:\mathrm{log}\:\left({a}+\mathrm{1}\right). \\ $$

  Pg 1603      Pg 1604      Pg 1605      Pg 1606      Pg 1607      Pg 1608      Pg 1609      Pg 1610      Pg 1611      Pg 1612   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com