Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1608

Question Number 47420    Answers: 0   Comments: 0

$$ \\ $$

Question Number 47394    Answers: 1   Comments: 1

f(z)=((3z+1)/(2−4z)) f(f(z))=...

$${f}\left({z}\right)=\frac{\mathrm{3}{z}+\mathrm{1}}{\mathrm{2}−\mathrm{4}{z}} \\ $$$${f}\left({f}\left({z}\right)\right)=... \\ $$

Question Number 47391    Answers: 2   Comments: 1

z_1 =3+i z_2 =1−2i determinant ((((2z_2 +z_1 −5−i)/(2z_1 −z_2 +3−i))))^2 =..

$${z}_{\mathrm{1}} =\mathrm{3}+{i} \\ $$$${z}_{\mathrm{2}} =\mathrm{1}−\mathrm{2}{i} \\ $$$$\begin{vmatrix}{\frac{\mathrm{2}{z}_{\mathrm{2}} +{z}_{\mathrm{1}} −\mathrm{5}−{i}}{\mathrm{2}{z}_{\mathrm{1}} −{z}_{\mathrm{2}} +\mathrm{3}−{i}}}\end{vmatrix}^{\mathrm{2}} =.. \\ $$

Question Number 47389    Answers: 0   Comments: 1

((√3)−i)^(1+2i) =...

$$\left(\sqrt{\mathrm{3}}−{i}\right)^{\mathrm{1}+\mathrm{2}{i}} =... \\ $$

Question Number 47387    Answers: 0   Comments: 3

Find∫(√(sin2x)) dx=??

$$\mathscr{F}{ind}\int\sqrt{{sin}\mathrm{2}{x}}\:{dx}=?? \\ $$

Question Number 47382    Answers: 0   Comments: 1

Question Number 47377    Answers: 1   Comments: 1

Question Number 47376    Answers: 1   Comments: 0

Question Number 47365    Answers: 0   Comments: 0

Question Number 47364    Answers: 1   Comments: 1

anybody please help q...∫cos^(−1) (√x) dx

$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${anybody}\:{please}\:{help} \\ $$$${q}...\int\mathrm{cos}^{−\mathrm{1}} \sqrt{{x}}\:{dx} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 47354    Answers: 0   Comments: 4

Question Number 47350    Answers: 3   Comments: 1

Question Number 47349    Answers: 1   Comments: 0

Question Number 47344    Answers: 1   Comments: 0

On the moon the acceleration of free fall is only about 1.6ms^(−2) . About how long should a boy be able to throw a ball there if he can throw it 10m high on earth? (g=10ms^(−2) )

$${On}\:{the}\:{moon}\:{the}\:{acceleration}\:{of} \\ $$$${free}\:{fall}\:{is}\:{only}\:{about}\:\mathrm{1}.\mathrm{6}{ms}^{−\mathrm{2}} . \\ $$$${About}\:{how}\:{long}\:{should}\:{a}\:{boy}\:{be} \\ $$$${able}\:{to}\:{throw}\:{a}\:{ball}\:{there}\:{if}\:{he}\:{can} \\ $$$${throw}\:{it}\:\mathrm{10}{m}\:{high}\:{on}\:{earth}? \\ $$$$\left({g}=\mathrm{10}{ms}^{−\mathrm{2}} \right) \\ $$

Question Number 47342    Answers: 2   Comments: 1

Question Number 47341    Answers: 0   Comments: 0

1.sketch the region of integration,reverse order of integration and hence evaluate the ∫_0 ^(2(√(ln3))) ∫_(y/2) ^(√(ln3)) e^x^2 dx dy

$$\mathrm{1}.\mathrm{sketch}\:\:\mathrm{the}\:\:\mathrm{region}\:\:\mathrm{of}\:\:\mathrm{integration},{reverse}\:\:{order}\:\:{of}\:\:{integration}\:\:{and}\:\:{hence}\:\:{evaluate}\:\:{the}\:\underset{\mathrm{0}} {\overset{\mathrm{2}\sqrt{{ln}\mathrm{3}}} {\int}}\:\underset{{y}/\mathrm{2}} {\overset{\sqrt{{ln}\mathrm{3}}} {\int}}\:\:{e}^{{x}^{\mathrm{2}} } \:{dx}\:{dy} \\ $$

Question Number 47333    Answers: 2   Comments: 0

An aircraft flying horizontally 100m above the ground and at 720km/h drops a bomb on a target on the ground.Determine the acute angle between the vertical and the line joining the aircraft and target at the instance when the bomb is released.(g=10ms^(−2) )

$${An}\:{aircraft}\:{flying}\:{horizontally} \\ $$$$\mathrm{100}{m}\:{above}\:{the}\:{ground}\:{and}\:{at}\:\mathrm{720}{km}/{h} \\ $$$${drops}\:{a}\:{bomb}\:{on}\:{a}\:{target}\:{on}\:{the} \\ $$$${ground}.{Determine}\:{the}\:{acute}\:{angle} \\ $$$${between}\:{the}\:{vertical}\:{and}\:{the}\:{line} \\ $$$${joining}\:{the}\:{aircraft}\:{and}\:{target}\:{at} \\ $$$${the}\:{instance}\:{when}\:{the}\:{bomb}\:{is} \\ $$$${released}.\left({g}=\mathrm{10}{ms}^{−\mathrm{2}} \right) \\ $$$$ \\ $$

Question Number 47331    Answers: 0   Comments: 1

this remained unsolved... ∣x−(3/4)∣×∣x+(5/4)∣=3; x∈C

$$\mathrm{this}\:\mathrm{remained}\:\mathrm{unsolved}... \\ $$$$\mid{x}−\frac{\mathrm{3}}{\mathrm{4}}\mid×\mid{x}+\frac{\mathrm{5}}{\mathrm{4}}\mid=\mathrm{3};\:{x}\in\mathbb{C} \\ $$

Question Number 47316    Answers: 1   Comments: 3

Question Number 47314    Answers: 1   Comments: 1

During random motion, gas molecules do not interact with each other . Hence Potential energy =0 ...... Pls explain why P.E = 0? P.E is stored form of energy,right?

$${During}\:{random}\:{motion},\:{gas}\:{molecules} \\ $$$${do}\:{not}\:{interact}\:{with}\:{each}\:{other}\:. \\ $$$${Hence}\:\:{Potential}\:{energy}\:=\mathrm{0}\:...... \\ $$$${Pls}\:{explain}\:{why}\:{P}.{E}\:=\:\mathrm{0}? \\ $$$${P}.{E}\:{is}\:{stored}\:{form}\:{of}\:{energy},{right}? \\ $$

Question Number 47310    Answers: 0   Comments: 1

Question Number 49003    Answers: 0   Comments: 2

∫((logx)/(√(1−x^x )))dx please help this

$$\int\frac{\boldsymbol{\mathrm{log}{x}}}{\sqrt{\mathrm{1}−\boldsymbol{{x}}^{\boldsymbol{{x}}} }}\boldsymbol{\mathrm{d}{x}} \\ $$$$\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{help}}\:\boldsymbol{\mathrm{this}} \\ $$

Question Number 47302    Answers: 1   Comments: 0

A train which travels at a uniform speed due to mechanical fault after traveling for an hour goes at 3/5 th of the original speed and reaches the destination 2 hours late.If the fault occured after traveling another 50 miles the train would have reached 40 minutes earlier. What is the distance between the two stations ?

$${A}\:{train}\:{which}\:{travels}\:{at}\:{a}\:{uniform}\:{speed}\:{due}\:{to}\:{mechanical}\: \\ $$$${fault}\:{after}\:{traveling}\:{for}\:{an}\:{hour}\:{goes}\:{at}\:\mathrm{3}/\mathrm{5}\:{th}\:{of}\:{the}\:{original}\: \\ $$$${speed}\:{and}\:{reaches}\:{the}\:{destination}\:\mathrm{2}\:{hours}\:{late}.{If}\:{the}\:{fault} \\ $$$${occured}\:{after}\:{traveling}\:{another}\:\mathrm{50}\:{miles}\:{the}\:{train}\:{would}\:{have} \\ $$$${reached}\:\mathrm{40}\:{minutes}\:{earlier}.\:{What}\:{is}\:{the}\:{distance}\:{between}\:{the}\: \\ $$$${two}\:{stations}\:? \\ $$

Question Number 47301    Answers: 1   Comments: 0

If the equation x^2 +px+q =0 has roots a and b where p, q are non−zero constants. Then

$$\mathrm{If}\:\mathrm{the}\:\mathrm{equation}\:{x}^{\mathrm{2}} +{px}+{q}\:=\mathrm{0}\:\mathrm{has}\:\mathrm{roots} \\ $$$${a}\:\mathrm{and}\:{b}\:\mathrm{where}\:{p},\:{q}\:\mathrm{are}\:\mathrm{non}−\mathrm{zero}\: \\ $$$$\mathrm{constants}.\:\mathrm{Then} \\ $$

Question Number 47295    Answers: 0   Comments: 6

calculate f(α) =∫_(−∞) ^(+∞) (dx/(x^2 +2x cosα +1)) 2) calculate g(α)=∫_(−∞) ^(+∞) ((sinα)/((x^2 +2x cosα+1)^2 ))dx 3) find f^((n)) (α) with n integr natural . 4) calculate ∫_(−∞) ^(+∞) (dx/(x^2 +x +1)) and ∫_(−∞) ^(+∞) (dx/((x^2 +x+1)^2 ))

$${calculate}\:{f}\left(\alpha\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{2}{x}\:{cos}\alpha\:+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left(\alpha\right)=\int_{−\infty} ^{+\infty} \:\:\frac{{sin}\alpha}{\left({x}^{\mathrm{2}} \:+\mathrm{2}{x}\:{cos}\alpha+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{f}^{\left({n}\right)} \left(\alpha\right)\:{with}\:{n}\:{integr}\:{natural}\:. \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+{x}\:+\mathrm{1}}\:{and}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 47291    Answers: 1   Comments: 0

solve for x∈C: ∣x−(3/4)∣×∣x+(5/4)∣=3

$$\mathrm{solve}\:\mathrm{for}\:{x}\in\mathbb{C}: \\ $$$$\mid{x}−\frac{\mathrm{3}}{\mathrm{4}}\mid×\mid{x}+\frac{\mathrm{5}}{\mathrm{4}}\mid=\mathrm{3} \\ $$

  Pg 1603      Pg 1604      Pg 1605      Pg 1606      Pg 1607      Pg 1608      Pg 1609      Pg 1610      Pg 1611      Pg 1612   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com