Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1606

Question Number 47807    Answers: 1   Comments: 0

sin xy^2 =y^2 +2x diferential express is

$$\mathrm{sin}\:{xy}^{\mathrm{2}} ={y}^{\mathrm{2}} +\mathrm{2}{x} \\ $$$$ \\ $$$$\mathrm{diferential}\:{express}\:\mathrm{is} \\ $$

Question Number 47850    Answers: 1   Comments: 2

calculate A_p =∫_0 ^1 ((x^p −1)/(ln(x)))dx with p>0.

$${calculate}\:{A}_{{p}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{{p}} −\mathrm{1}}{{ln}\left({x}\right)}{dx}\:{with}\:{p}>\mathrm{0}. \\ $$

Question Number 47788    Answers: 0   Comments: 1

Question Number 47779    Answers: 0   Comments: 1

Question Number 47778    Answers: 1   Comments: 0

f(x)=2x^3 +x^2 −2x−1 f^(−1) (x)=...

$${f}\left({x}\right)=\mathrm{2}{x}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{1} \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=... \\ $$

Question Number 47775    Answers: 2   Comments: 1

Question Number 47771    Answers: 0   Comments: 0

∫_0 ^(π/2) (x/(tanx))dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{x}}{{tanx}}{dx} \\ $$

Question Number 47770    Answers: 1   Comments: 3

∫_0 ^1 ((x^2 −1)/(lnx))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} −\mathrm{1}}{{lnx}}{dx} \\ $$

Question Number 47768    Answers: 0   Comments: 3

Somebody know spanish?

$$\mathrm{Somebody}\:\mathrm{know}\:\mathrm{spanish}? \\ $$

Question Number 47810    Answers: 1   Comments: 1

A mobike rider moving from A to B with speed 20km/h notices that a bus goes past it every 21 minute in the direction of his motion and every 7 minutes in the opposite direction.Velocity of the bus is a)25km/h b)35km/h c)30km/h d)40km/h

$${A}\:{mobike}\:{rider}\:{moving}\:{from}\:{A}\:{to}\:{B} \\ $$$${with}\:{speed}\:\mathrm{20}{km}/{h}\:{notices}\:{that}\:{a} \\ $$$${bus}\:{goes}\:{past}\:{it}\:{every}\:\mathrm{21}\:{minute}\:{in} \\ $$$${the}\:{direction}\:{of}\:{his}\:{motion}\:{and} \\ $$$${every}\:\mathrm{7}\:{minutes}\:{in}\:{the}\:{opposite} \\ $$$${direction}.{Velocity}\:{of}\:{the}\:{bus}\:{is} \\ $$$$\left.{a}\left.\right)\left.\mathrm{25}{km}/{h}\:{b}\right)\mathrm{35}{km}/{h}\:{c}\right)\mathrm{30}{km}/{h} \\ $$$$\left.{d}\right)\mathrm{40}{km}/{h} \\ $$$$ \\ $$

Question Number 47743    Answers: 2   Comments: 0

∫(dx/(x^n −x)) the problems i have posted are tricky...

$$\int\frac{{dx}}{{x}^{{n}} −{x}}\:\: \\ $$$${the}\:{problems}\:{i}\:{have}\:{posted}\:{are}\:{tricky}... \\ $$

Question Number 47737    Answers: 1   Comments: 0

I = ∫_0 ^( L/2) ((Rz^2 )/((d^2 +z^2 )(√(d^2 +z^2 −R^2 )))) dz Find I .

$$\:\:{I}\:=\:\int_{\mathrm{0}} ^{\:\:{L}/\mathrm{2}} \frac{{Rz}^{\mathrm{2}} }{\left({d}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)\sqrt{{d}^{\mathrm{2}} +{z}^{\mathrm{2}} −{R}^{\mathrm{2}} }}\:{dz} \\ $$$$\:{Find}\:{I}\:. \\ $$

Question Number 47735    Answers: 1   Comments: 5

Question Number 47727    Answers: 1   Comments: 0

Find the value of a for a : 4 : : 5 : 10

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:{a}\:\mathrm{for} \\ $$$$\:\:\:\:\:{a}\::\:\mathrm{4}\::\::\:\mathrm{5}\::\:\mathrm{10} \\ $$

Question Number 47725    Answers: 1   Comments: 2

Question Number 47713    Answers: 0   Comments: 4

Question Number 47712    Answers: 0   Comments: 0

show that ^(^2 C_2 ) C_n = (1/((1−n)!(n−1)(n−2)(n−3)...3(2)(1)))

$${show}\:{that}\: \\ $$$$\:\:^{\:^{\mathrm{2}} \:{C}_{\mathrm{2}} \:} {C}_{{n}} =\:\frac{\mathrm{1}}{\left(\mathrm{1}−{n}\right)!\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)\left({n}−\mathrm{3}\right)...\mathrm{3}\left(\mathrm{2}\right)\left(\mathrm{1}\right)} \\ $$

Question Number 47720    Answers: 2   Comments: 0

find ∫ ln(1+x^3 )dx

$${find}\:\int\:{ln}\left(\mathrm{1}+{x}^{\mathrm{3}} \right){dx} \\ $$

Question Number 47740    Answers: 2   Comments: 0

∫(dx/(x(x+1)(x+2)(x+3)...(x+n)))

$$\int\frac{{dx}}{{x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left({x}+\mathrm{3}\right)...\left({x}+{n}\right)} \\ $$

Question Number 47697    Answers: 1   Comments: 1

Question Number 47677    Answers: 0   Comments: 3

∫x^(x ) dx=

$$\int\mathrm{x}^{\mathrm{x}\:} \mathrm{dx}= \\ $$

Question Number 47675    Answers: 2   Comments: 0

A particle of mass 4kg was at rest a a point of position vector i +4j. A force F was applied to it and it moved at a velocity of (3i + 7j)ms^(−1) after a time of 5seconds. Find a) the magnitude of F b) The speed at which it moves,Hence, c) The distance it covered.

$${A}\:{particle}\:{of}\:{mass}\:\mathrm{4}{kg}\:{was}\:{at}\:{rest}\:{a}\:{a}\:{point}\:{of}\:{position}\:{vector} \\ $$$${i}\:+\mathrm{4}{j}.\:{A}\:{force}\:{F}\:{was}\:{applied}\:{to}\:{it}\:{and}\:{it}\:{moved}\:{at}\:{a}\:{velocity} \\ $$$${of}\:\left(\mathrm{3}{i}\:+\:\mathrm{7}{j}\right){ms}^{−\mathrm{1}} \:\:\:{after}\:{a}\:{time}\:{of}\:\:\mathrm{5}{seconds}.\:{Find}\: \\ $$$$\left.{a}\right)\:{the}\:{magnitude}\:{of}\:{F} \\ $$$$\left.{b}\right)\:{The}\:{speed}\:{at}\:{which}\:{it}\:{moves},{Hence}, \\ $$$$\left.{c}\right)\:{The}\:{distance}\:{it}\:{covered}. \\ $$$$ \\ $$$$ \\ $$

Question Number 47659    Answers: 2   Comments: 0

Question Number 47657    Answers: 1   Comments: 7

Question Number 47656    Answers: 1   Comments: 1

A square is divided into 9 identical smaller squares.Six identical balls are to be placed in these smaller squares such that each of the three rows gets at least one ball(one ball in one square only).In how many different ways can this be done? a)91 b)51 c)81 d)41

$${A}\:{square}\:{is}\:{divided}\:{into}\:\mathrm{9}\:{identical} \\ $$$${smaller}\:{squares}.{Six}\:{identical}\:{balls} \\ $$$${are}\:{to}\:{be}\:{placed}\:{in}\:{these}\:{smaller}\: \\ $$$${squares}\:{such}\:{that}\:{each}\:{of}\:{the}\:{three} \\ $$$${rows}\:{gets}\:{at}\:{least}\:{one}\:{ball}\left({one}\right. \\ $$$$\left.{ball}\:{in}\:{one}\:{square}\:{only}\right).{In}\:{how} \\ $$$${many}\:{different}\:{ways}\:{can}\:{this}\:{be} \\ $$$${done}? \\ $$$$\left.{a}\left.\right)\left.\mathrm{9}\left.\mathrm{1}\:{b}\right)\mathrm{51}\:{c}\right)\mathrm{81}\:{d}\right)\mathrm{41} \\ $$$$ \\ $$

Question Number 47651    Answers: 1   Comments: 1

calculate A_n =∫_0 ^1 sin([nx])e^(−2x) dx with n integr natural .

$${calculate}\:\:{A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{sin}\left(\left[{nx}\right]\right){e}^{−\mathrm{2}{x}} {dx}\:{with}\:{n} \\ $$$${integr}\:{natural}\:. \\ $$

  Pg 1601      Pg 1602      Pg 1603      Pg 1604      Pg 1605      Pg 1606      Pg 1607      Pg 1608      Pg 1609      Pg 1610   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com