Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1601
Question Number 46073 Answers: 3 Comments: 1
Question Number 46032 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}:\:\:\:\:\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\:\mathrm{tan}^{−\mathrm{1}} \:\left(\frac{\mathrm{2k}}{\mathrm{2}\:+\:\mathrm{k}^{\mathrm{2}} \:+\:\mathrm{k}^{\mathrm{4}} }\right) \\ $$$$ \\ $$$$\mathrm{Answer}:\:\:\:\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{n}^{\mathrm{2}} \:+\:\mathrm{n}\:+\:\mathrm{1}\right)\:−\:\frac{\pi}{\mathrm{4}} \\ $$
Question Number 46029 Answers: 0 Comments: 1
Question Number 46025 Answers: 1 Comments: 0
Question Number 46020 Answers: 1 Comments: 0
Question Number 46014 Answers: 0 Comments: 0
Question Number 46012 Answers: 2 Comments: 0
$$\mathrm{the}\:\mathrm{normal}\:\mathrm{at}\:\mathrm{any}\:\mathrm{point} \\ $$$$\mathrm{of}\:\mathrm{hyperbola}\:\mathrm{meets}\:\mathrm{the}\:\mathrm{axes} \\ $$$$\mathrm{at}\:\mathrm{E},\mathrm{F}.\mathrm{find}\:\mathrm{the}\:\mathrm{locus}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:\mathrm{EF}. \\ $$
Question Number 46011 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{P}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{any}}\:\boldsymbol{\mathrm{point}}\:\boldsymbol{\mathrm{on}}\:\:\boldsymbol{\mathrm{rectangular}} \\ $$$$\boldsymbol{\mathrm{xy}}=\boldsymbol{\mathrm{c}}^{\mathrm{2}} \boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{line}}\:\boldsymbol{\mathrm{joining}} \\ $$$$\boldsymbol{\mathrm{P}}\:\mathrm{to}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{and}\:\mathrm{the}\: \\ $$$$\mathrm{tangent}\:\mathrm{at}\:\mathrm{P}\:\mathrm{are}\:\mathrm{equally}\:\mathrm{inclined} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{assymptotes} \\ $$
Question Number 46024 Answers: 0 Comments: 1
Question Number 46007 Answers: 1 Comments: 0
Question Number 46003 Answers: 1 Comments: 1
Question Number 45994 Answers: 2 Comments: 0
Question Number 45993 Answers: 1 Comments: 1
Question Number 45992 Answers: 1 Comments: 0
Question Number 45982 Answers: 1 Comments: 1
$${Find}\:{the}\:{value}\left({s}\right)\:{of}\:{a}\:{such}\:{that} \\ $$$${a}^{{x}} \geqslant{ax}\:{with}\:{a},\:{x}\in{R}. \\ $$
Question Number 45980 Answers: 1 Comments: 1
Question Number 45976 Answers: 0 Comments: 1
$${find}\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{n}\left[{x}\right]} {cos}\left({nx}\right){dx}\:{and}\:{v}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{e}^{{n}\left[{x}\right]} {sin}\left({nx}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:\Sigma\:{u}_{{n}} {v}_{{n}} \:\:{and}\:\Sigma\:\frac{{u}_{{n}} }{{v}_{{n}} } \\ $$
Question Number 45975 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$
Question Number 45974 Answers: 0 Comments: 0
$${calculate}\:\:{A}_{{n}} =\int_{\mathrm{0}} ^{{n}} \:\:\:{e}^{−{n}\left[{x}\right]} \:{sin}\:\left(\mathrm{2}{x}\right){dx} \\ $$$$\left.\mathrm{2}\right){study}\:{the}\:{cnvergence}\:{of}\:\Sigma\:{A}_{{n}} \\ $$
Question Number 45973 Answers: 0 Comments: 0
$${find}\:\int\:\:{sh}\left({x}\right){ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right){dx} \\ $$
Question Number 45972 Answers: 0 Comments: 0
$${find}\:\:\int\:\:{ch}\left({x}\right){ln}\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right){dx} \\ $$
Question Number 45971 Answers: 0 Comments: 0
$${calculate}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{arctan}\left({xt}\right)}{\mathrm{1}+{x}^{\mathrm{2}} {t}^{\mathrm{2}} }{dt} \\ $$
Question Number 45970 Answers: 1 Comments: 1
$${find}\:\int\:\:\frac{{arcsin}\left(\mathrm{2}{x}\right)}{\sqrt{\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} }}{dx} \\ $$
Question Number 45968 Answers: 1 Comments: 2
$$\left.\mathrm{1}\right){find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{cos}\left({nx}\right)}{{n}}\:{and}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{sin}\left({nx}\right)}{{n}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}{cos}\left(\frac{\mathrm{2}{n}\pi}{\mathrm{3}}\right)\:{and}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}{sin}\left(\frac{\mathrm{2}{n}\pi}{\mathrm{3}}\right) \\ $$
Question Number 45969 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\:{find}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{ix}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({x}\right) \\ $$
Question Number 45961 Answers: 0 Comments: 0
$${let}\:{f}_{{n}} \left({x}\right)=\left(−\mathrm{1}\right)^{{n}} \:{ln}\left(\mathrm{1}+\frac{{x}^{\mathrm{2}} }{{n}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\right)\:{and}\:{f}\left({x}\right)=\Sigma\:{f}_{{n}} \left({x}\right) \\ $$$${find}\:{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right). \\ $$
Pg 1596 Pg 1597 Pg 1598 Pg 1599 Pg 1600 Pg 1601 Pg 1602 Pg 1603 Pg 1604 Pg 1605
Terms of Service
Privacy Policy
Contact: info@tinkutara.com