Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1601

Question Number 48529    Answers: 3   Comments: 0

If cos A+cos B=m and sin A+sin B=n where m, n ≠0, then sin (A+B) is equal to

$$\mathrm{If}\:\:\mathrm{cos}\:{A}+\mathrm{cos}\:{B}={m}\:\mathrm{and}\:\mathrm{sin}\:{A}+\mathrm{sin}\:{B}={n} \\ $$$$\mathrm{where}\:{m},\:{n}\:\neq\mathrm{0},\:\mathrm{then}\:\mathrm{sin}\:\left({A}+{B}\right)\:\mathrm{is}\:\mathrm{equal} \\ $$$$\mathrm{to} \\ $$

Question Number 48528    Answers: 1   Comments: 0

The value of (√3) cot 20°− 4 cos 20° is

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\sqrt{\mathrm{3}}\:\mathrm{cot}\:\mathrm{20}°−\:\mathrm{4}\:\mathrm{cos}\:\mathrm{20}°\:\:\mathrm{is} \\ $$

Question Number 48527    Answers: 2   Comments: 0

If xy + yz + zx = 1, then tan^(−1) x + tan^(−1) y + tan^(−1) z =

$$\mathrm{If}\:\:{xy}\:+\:{yz}\:+\:{zx}\:=\:\mathrm{1},\:\mathrm{then} \\ $$$$\mathrm{tan}^{−\mathrm{1}} {x}\:+\:\mathrm{tan}^{−\mathrm{1}} {y}\:+\:\mathrm{tan}^{−\mathrm{1}} {z}\:=\: \\ $$

Question Number 48526    Answers: 2   Comments: 0

The maximum and minimum values of a cos 2θ+ b sin 2θ are

$$\mathrm{The}\:\mathrm{maximum}\:\mathrm{and}\:\mathrm{minimum}\:\mathrm{values} \\ $$$$\mathrm{of}\:\:\:{a}\:\mathrm{cos}\:\mathrm{2}\theta+\:{b}\:\mathrm{sin}\:\mathrm{2}\theta\:\:\mathrm{are} \\ $$

Question Number 48525    Answers: 0   Comments: 0

Question Number 48524    Answers: 0   Comments: 0

Prime numbers differing by 2 are called _____.

$$\mathrm{Prime}\:\mathrm{numbers}\:\mathrm{differing}\:\mathrm{by}\:\mathrm{2}\:\mathrm{are} \\ $$$$\mathrm{called}\:\_\_\_\_\_. \\ $$

Question Number 48522    Answers: 1   Comments: 1

Question Number 48517    Answers: 3   Comments: 1

Question Number 48510    Answers: 0   Comments: 2

Question Number 48509    Answers: 0   Comments: 0

For every natural numbers n Find the value of Σ_(0≤j≤i≤n) (((−1)^j )/((n − i)! j!))

$${For}\:\:{every}\:\:{natural}\:\:{numbers}\:\:{n}\:\: \\ $$$${Find}\:\:\:{the}\:\:{value}\:\:{of} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{\mathrm{0}\leqslant{j}\leqslant{i}\leqslant{n}} {\sum}\:\:\frac{\left(−\mathrm{1}\right)^{{j}} }{\left({n}\:−\:{i}\right)!\:{j}!} \\ $$

Question Number 48506    Answers: 0   Comments: 0

let S_n =Σ_(k=0) ^∞ (((−1)^k )/(2k+1)) 1)prove that (π/4) −S_n =(−1)^(n+1) ∫_0 ^1 (t^(2n+2) /(1+t^2 ))dt 2) conclude lim_(n→+∞) S_n .

$${let}\:\:{S}_{{n}} =\sum_{{k}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}} \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:\frac{\pi}{\mathrm{4}}\:−{S}_{{n}} =\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{t}^{\mathrm{2}{n}+\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{2}\right)\:{conclude}\:{lim}_{{n}\rightarrow+\infty} \:\:{S}_{{n}} . \\ $$

Question Number 48501    Answers: 1   Comments: 0

Question Number 48500    Answers: 0   Comments: 2

Question Number 48498    Answers: 2   Comments: 4

find A_n = ∫_0 ^(π/4) cos^n xdx and B_n =∫_0 ^(π/4) sin^n xdx 2) find ∫_0 ^(π/4) cos^6 xdx and ∫_0 ^(π/4) sin^6 xdx .

$${find}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{cos}^{{n}} {xdx}\:\:{and}\:{B}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{sin}^{{n}} {xdx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{cos}^{\mathrm{6}} {xdx}\:{and}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{sin}^{\mathrm{6}} {xdx}\:. \\ $$

Question Number 48497    Answers: 0   Comments: 5

let f(x)=∫_0 ^1 ((ln(1+xt^2 ))/(1+t^2 ))dt 1) find a xplicit form of f(x) 2) developp f at integr serie 3)find the value of ∫_0 ^1 ((ln(1+t^2 ))/(1+t^2 ))dt 4)find the value of ∫_0 ^1 ((ln(1+2t^2 ))/(1+t^2 ))dt

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{xplicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}\: \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{4}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+\mathrm{2}{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$ \\ $$

Question Number 48496    Answers: 0   Comments: 0

find f(x) =∫ ((ln(1+xt^2 ))/(1+t^2 ))dt

$${find}\:{f}\left({x}\right)\:=\int\:\:\frac{{ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$

Question Number 48493    Answers: 2   Comments: 1

let S_n =Σ_(k=1) ^n (k^2 /((2k−1)(2k+1))) 1) determine S_n interms of n 2) find lim_(n→+∞) S_n

$${let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{{k}^{\mathrm{2}} }{\left(\mathrm{2}{k}−\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{1}\right)} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{S}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \\ $$

Question Number 48495    Answers: 1   Comments: 1

1)calculate I =∫ ((ln(1+t))/(1+t))dt 2) find ∫_0 ^1 ((ln(1+t))/(1+t))dt

$$\left.\mathrm{1}\right){calculate}\:\:{I}\:=\int\:\frac{{ln}\left(\mathrm{1}+{t}\right)}{\mathrm{1}+{t}}{dt} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}+{t}\right)}{\mathrm{1}+{t}}{dt} \\ $$

Question Number 48494    Answers: 1   Comments: 0

find A_n =∫_0 ^(π/2) ((1−cos(n+1)x)/(2sin((x/2))))dx .

$${find}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}−{cos}\left({n}+\mathrm{1}\right){x}}{\mathrm{2}{sin}\left(\frac{{x}}{\mathrm{2}}\right)}{dx}\:. \\ $$

Question Number 48491    Answers: 0   Comments: 0

prove that ∫_0 ^∞ (((1+t)^(−(3/4)) −(1+t)^(−(1/4)) )/t)dt is convergent and find its value .

$${prove}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(\mathrm{1}+{t}\right)^{−\frac{\mathrm{3}}{\mathrm{4}}} −\left(\mathrm{1}+{t}\right)^{−\frac{\mathrm{1}}{\mathrm{4}}} }{{t}}{dt}\:{is}\:{convergent}\:{and}\:{find}\:{its}\:{value}\:. \\ $$

Question Number 48489    Answers: 0   Comments: 0

Question Number 48484    Answers: 1   Comments: 0

Question Number 48482    Answers: 0   Comments: 0

(at−h)^2 +((a/t)−k)^2 =R^( 2) where a, h, k, R are constants. Then find s^2 =(t_1 −t_2 )^2 (1+(1/(t_1 ^2 t_2 ^2 ))) where t_1 , t_2 are roots of eq. at top.

$$\left({at}−{h}\right)^{\mathrm{2}} +\left(\frac{{a}}{{t}}−{k}\right)^{\mathrm{2}} ={R}^{\:\mathrm{2}} \\ $$$${where}\:\:\:{a},\:{h},\:{k},\:{R}\:{are}\:{constants}. \\ $$$${Then}\:{find}\: \\ $$$$\:\:\:{s}^{\mathrm{2}} \:=\left({t}_{\mathrm{1}} −{t}_{\mathrm{2}} \right)^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{{t}_{\mathrm{1}} ^{\mathrm{2}} {t}_{\mathrm{2}} ^{\mathrm{2}} }\right)\: \\ $$$${where}\:{t}_{\mathrm{1}} ,\:{t}_{\mathrm{2}} \:{are}\:{roots}\:{of}\:{eq}.\:{at}\:{top}. \\ $$

Question Number 48474    Answers: 2   Comments: 0

evaluate ∫_0 ^π sin^2 xdx

$$\boldsymbol{\mathrm{evaluate}}\:\int_{\mathrm{0}} ^{\pi} \boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{{x}\mathrm{d}{x}} \\ $$

Question Number 48466    Answers: 1   Comments: 0

Question Number 48460    Answers: 1   Comments: 2

A point source has a distance d to the center of a big sphere with radius R. An other smaller sphere with radius r is placed between the point source and the big sphere. If the distance between the two spheres is constant, say it′s c. Find the maximal shadow area of the small sphere on the surface of the big sphere. Find also the minimal complete shadow of the small sphere on the surface of the big sphere. Assume the small sphere is much smaller than the big sphere such that the big sphere will never completely stay in the shadow of the small sphere.

$${A}\:{point}\:{source}\:{has}\:{a}\:{distance}\:{d} \\ $$$${to}\:{the}\:{center}\:{of}\:{a}\:{big}\:{sphere}\:{with}\:{radius} \\ $$$${R}.\:\:{An}\:{other}\:{smaller}\:{sphere}\:{with}\:{radius} \\ $$$${r}\:{is}\:{placed}\:{between}\:{the}\:{point}\:{source} \\ $$$${and}\:{the}\:{big}\:{sphere}.\:{If}\:{the}\:{distance} \\ $$$${between}\:{the}\:{two}\:{spheres}\:{is}\:{constant}, \\ $$$${say}\:{it}'{s}\:{c}.\: \\ $$$${Find}\:{the}\:{maximal}\:{shadow}\:{area}\:{of}\:{the} \\ $$$${small}\:{sphere}\:{on}\:{the}\:{surface}\:{of}\:{the} \\ $$$${big}\:{sphere}.\:{Find}\:{also}\:{the}\:{minimal} \\ $$$${complete}\:{shadow}\:{of}\:{the}\:{small}\:{sphere} \\ $$$${on}\:{the}\:{surface}\:{of}\:{the}\:{big}\:{sphere}. \\ $$$$ \\ $$$${Assume}\:{the}\:{small}\:{sphere}\:{is}\:{much} \\ $$$${smaller}\:{than}\:{the}\:{big}\:{sphere}\:{such}\:{that} \\ $$$${the}\:{big}\:{sphere}\:{will}\:{never}\:{completely}\:{stay} \\ $$$${in}\:{the}\:{shadow}\:{of}\:{the}\:{small}\:{sphere}. \\ $$

  Pg 1596      Pg 1597      Pg 1598      Pg 1599      Pg 1600      Pg 1601      Pg 1602      Pg 1603      Pg 1604      Pg 1605   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com