Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1600

Question Number 46640    Answers: 0   Comments: 1

1≤n,m∈N. Prove that 3(m+n)+10ln (m!n!)≥6(√(mnH_m H_n )). (H_m =Σ_(i=1) ^m (1/i), H_n =Σ_(j=1) ^n (1/j))

$$\mathrm{1}\leqslant{n},{m}\in\mathbb{N}.\:{Prove}\:{that} \\ $$$$\mathrm{3}\left({m}+{n}\right)+\mathrm{10ln}\:\left({m}!{n}!\right)\geqslant\mathrm{6}\sqrt{{mnH}_{{m}} {H}_{{n}} }. \\ $$$$\left({H}_{{m}} =\underset{{i}=\mathrm{1}} {\overset{{m}} {\sum}}\frac{\mathrm{1}}{{i}},\:{H}_{{n}} =\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{j}}\right) \\ $$

Question Number 46639    Answers: 1   Comments: 2

Question Number 46641    Answers: 0   Comments: 1

Question Number 46637    Answers: 2   Comments: 3

Question Number 46636    Answers: 1   Comments: 0

tan θ=10tan60^°

$$\mathrm{tan}\:\theta=\mathrm{10tan60}^{°} \\ $$

Question Number 46631    Answers: 0   Comments: 1

Question Number 46629    Answers: 1   Comments: 0

An object is projected from a height of 80m above the ground with a velocity of 40m/s at an angle of 30 degree to the horizontal.What is the tume of flight?

$${An}\:{object}\:{is}\:{projected}\:{from}\:{a} \\ $$$${height}\:{of}\:\mathrm{80}{m}\:{above}\:{the}\:{ground} \\ $$$${with}\:{a}\:{velocity}\:{of}\:\mathrm{40}{m}/{s}\:{at}\:{an} \\ $$$${angle}\:{of}\:\mathrm{30}\:{degree}\:{to}\:{the} \\ $$$${horizontal}.{What}\:{is}\:{the}\:{tume}\:{of} \\ $$$${flight}? \\ $$

Question Number 46624    Answers: 1   Comments: 4

The value of k which minimizes F(k)= ∫_0 ^4 ∣x(4−x)−k∣dx = ?

$${The}\:{value}\:{of}\:{k}\:{which}\:{minimizes} \\ $$$${F}\left({k}\right)=\:\int_{\mathrm{0}} ^{\mathrm{4}} \mid{x}\left(\mathrm{4}−{x}\right)−{k}\mid{dx}\:=\:? \\ $$

Question Number 46617    Answers: 1   Comments: 1

calculate Σ_(n=1) ^∞ (1/(n(n+1)(n+2)(n+3)(n+4)(n+5)))

$${calculate}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\left({n}+\mathrm{3}\right)\left({n}+\mathrm{4}\right)\left({n}+\mathrm{5}\right)} \\ $$

Question Number 46612    Answers: 1   Comments: 4

1) calculate I_n = ∫_0 ^∞ x^n e^((1−i)x) dx with n integr natural and i^2 =−1 2) find ∫_0 ^∞ x^(4k+3) xsinx dx .

$$\left.\mathrm{1}\right)\:{calculate}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:{x}^{{n}} \:{e}^{\left(\mathrm{1}−{i}\right){x}} {dx}\:{with}\:{n}\:{integr}\:{natural}\:{and}\:{i}^{\mathrm{2}} =−\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\int_{\mathrm{0}} ^{\infty} \:{x}^{\mathrm{4}{k}+\mathrm{3}} \:{xsinx}\:{dx}\:. \\ $$

Question Number 46611    Answers: 2   Comments: 1

Question Number 46610    Answers: 0   Comments: 2

let f_n (x)=e^(−nx) −2e^(−2nx) with x from[0,+∞[ 1)calculate ∫_0 ^∞ f_n (x)dx and Σ_(n=0) ^∞ (∫_0 ^∞ f_n (x)dx) 2) find S(x)=Σ_(n=0) ^∞ f_n (x) and ∫_0 ^∞ S(x)dx

$${let}\:{f}_{{n}} \left({x}\right)={e}^{−{nx}} −\mathrm{2}{e}^{−\mathrm{2}{nx}} \:\:{with}\:{x}\:{from}\left[\mathrm{0},+\infty\left[\right.\right. \\ $$$$\left.\mathrm{1}\right){calculate}\:\int_{\mathrm{0}} ^{\infty} \:{f}_{{n}} \left({x}\right){dx}\:\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(\int_{\mathrm{0}} ^{\infty} \:{f}_{{n}} \left({x}\right){dx}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{S}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:{f}_{{n}} \left({x}\right)\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:{S}\left({x}\right){dx} \\ $$

Question Number 46609    Answers: 0   Comments: 1

solve x y^(′′) −e^(−x) y^′ =x sinx

$${solve}\:\:\:\:{x}\:{y}^{''} \:−{e}^{−{x}} {y}^{'} \:\:\:={x}\:{sinx} \\ $$

Question Number 46608    Answers: 0   Comments: 0

let the d.e xy^(′′) +(x^2 −x)y^′ +2y =0 find a solution developpable at integr serie.

$${let}\:{the}\:{d}.{e}\:\:{xy}^{''} \:+\left({x}^{\mathrm{2}} −{x}\right){y}^{'} \:+\mathrm{2}{y}\:=\mathrm{0} \\ $$$${find}\:{a}\:{solution}\:{developpable}\:{at}\:{integr}\:{serie}. \\ $$$$ \\ $$

Question Number 46607    Answers: 0   Comments: 1

calculate Σ_((i,j)∈ N^2 ) ((i+j)/3^(i+j) )

$${calculate}\:\sum_{\left({i},{j}\right)\in\:{N}^{\mathrm{2}} } \:\:\:\:\:\frac{{i}+{j}}{\mathrm{3}^{{i}+{j}} } \\ $$

Question Number 46604    Answers: 0   Comments: 1

∫_0 ^(π/2) ((xcos x−sin x)/(x^2 +sin x)) dx = ?

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{x}\mathrm{cos}\:{x}−\mathrm{sin}\:{x}}{{x}^{\mathrm{2}} +\mathrm{sin}\:{x}}\:{dx}\:=\:? \\ $$

Question Number 46598    Answers: 1   Comments: 1

calculate Σ_(n=0) ^∞ arctan((1/(n^2 +n+1)))

$${calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{arctan}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:+{n}+\mathrm{1}}\right) \\ $$

Question Number 46594    Answers: 1   Comments: 0

find ∫ ((√(x+(√x)))−(√(x−(√x))))dx

$${find}\:\int\:\left(\sqrt{{x}+\sqrt{{x}}}−\sqrt{{x}−\sqrt{{x}}}\right){dx} \\ $$

Question Number 46592    Answers: 2   Comments: 1

Find a solution to: 7x + 5y + 15z + 12w = 149

$$\mathrm{Find}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{to}:\:\:\:\mathrm{7x}\:+\:\mathrm{5y}\:+\:\mathrm{15z}\:+\:\mathrm{12w}\:=\:\mathrm{149} \\ $$

Question Number 46586    Answers: 2   Comments: 0

Solve x ∈ R x + (x/(√(x^2 + 1))) = ((35)/(12))

$${Solve}\:\:{x}\:\:\in\:\mathbb{R} \\ $$$$\:\:\:\:\:\:\:\:\:{x}\:+\:\:\frac{{x}}{\sqrt{{x}^{\mathrm{2}} \:+\:\mathrm{1}}}\:\:=\:\:\frac{\mathrm{35}}{\mathrm{12}} \\ $$

Question Number 46576    Answers: 0   Comments: 2

Please any note on how to find the first digit, first two digit and first three digits of any power

$$\mathrm{Please}\:\mathrm{any}\:\mathrm{note}\:\mathrm{on}\:\mathrm{how}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{first}\:\mathrm{digit},\:\mathrm{first}\:\mathrm{two}\:\mathrm{digit}\:\mathrm{and}\:\mathrm{first}\:\mathrm{three}\:\mathrm{digits} \\ $$$$\mathrm{of}\:\mathrm{any}\:\mathrm{power} \\ $$

Question Number 46573    Answers: 1   Comments: 4

Show that sin2x ≡((2tanx)/(1+tan^2 x))

$${Show}\:{that}\: \\ $$$${sin}\mathrm{2}{x}\:\equiv\frac{\mathrm{2}{tanx}}{\mathrm{1}+{tan}^{\mathrm{2}} {x}} \\ $$

Question Number 46570    Answers: 1   Comments: 0

If in triangle ABC ((cosB)/b) =((cosC)/c), show that the triangle is isosceles

$${If}\:{in}\:{triangle}\:{ABC}\:\:\:\frac{{cosB}}{{b}}\:=\frac{{cosC}}{{c}},\:{show}\:{that}\:{the} \\ $$$${triangle}\:{is}\:{isosceles} \\ $$

Question Number 46569    Answers: 1   Comments: 0

show that If a^2 ,b^2 ,c^(2 ) are in A.P the cotA,cotB,cotC are also in A.P

$${show}\:{that}\:\:{If}\:{a}^{\mathrm{2}} ,{b}^{\mathrm{2}} ,{c}^{\mathrm{2}\:} \:{are}\:{in}\:{A}.{P}\:\:{the}\:{cotA},{cotB},{cotC}\:{are} \\ $$$${also}\:{in}\:{A}.{P} \\ $$

Question Number 46568    Answers: 0   Comments: 0

show that if the side of a triangle are in A.P, then the cotangent also in A.P

$${show}\:{that}\:{if}\:{the}\:{side}\:{of}\:{a}\:{triangle}\:{are}\:{in}\:{A}.{P}, \\ $$$${then}\:{the}\:{cotangent}\:{also}\:{in}\:{A}.{P} \\ $$

Question Number 46567    Answers: 0   Comments: 0

Solve: 𝚺_(n = 1) ^∞ (((log n)/n))^2

$$\mathrm{Solve}:\:\:\:\:\:\:\underset{\mathrm{n}\:=\:\mathrm{1}} {\overset{\infty} {\boldsymbol{\sum}}}\:\:\left(\frac{\mathrm{log}\:\boldsymbol{\mathrm{n}}}{\boldsymbol{\mathrm{n}}}\right)^{\mathrm{2}} \\ $$

  Pg 1595      Pg 1596      Pg 1597      Pg 1598      Pg 1599      Pg 1600      Pg 1601      Pg 1602      Pg 1603      Pg 1604   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com