Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1600
Question Number 39067 Answers: 2 Comments: 7
Question Number 39059 Answers: 1 Comments: 0
Question Number 39058 Answers: 1 Comments: 1
Question Number 39055 Answers: 1 Comments: 0
Question Number 39040 Answers: 0 Comments: 0
$${find}\:{F}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:{ln}\left({x}^{\mathrm{2}} \:−\mathrm{2}{x}\:{sin}\left(\mathrm{2}\theta\right)\:+\mathrm{1}\right){d}\theta\:. \\ $$
Question Number 39039 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)\:=\frac{\mathrm{1}}{\mathrm{1}+\mid{sinx}\mid}\:\:\:\left(\mathrm{2}\pi\:{periodic}\:{even}\right) \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\:. \\ $$
Question Number 39038 Answers: 0 Comments: 2
$${let}\:{f}\left({z}\right)\:=\:\frac{{z}}{{z}^{\mathrm{2}} \:−{z}+\mathrm{2}} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$
Question Number 39037 Answers: 0 Comments: 2
$$\:{calculate}\:\:{F}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{cos}\left(\mathrm{4}{t}\right)}{{x}^{\mathrm{2}} \:−\mathrm{2}{x}\:{cost}\:+\mathrm{1}}\:{dt} \\ $$
Question Number 39035 Answers: 0 Comments: 1
$${find}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:{sin}\left({x}\right){e}^{−{t}\:\left[{x}\right]} {dx}\:\:\:{with}\:{t}>\mathrm{0} \\ $$
Question Number 39034 Answers: 0 Comments: 1
$${calculate}\:{interms}\:{of}\:{n} \\ $$$${A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{cos}\left({nx}\right)}{{cosx}\:+{sinx}}{dx}\:\:{and}\:{B}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{sin}\left({nx}\right)}{{cosx}\:+{sinx}}{dx}\:. \\ $$
Question Number 39033 Answers: 0 Comments: 2
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{xsin}\left(\mathrm{2}{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$
Question Number 39032 Answers: 1 Comments: 0
$${x}+{y}=\mathrm{3} \\ $$$${x}=\mathrm{2} \\ $$$${y}=? \\ $$
Question Number 39028 Answers: 1 Comments: 0
$$\left.\mathrm{1}\right)\:{calculate}\:\:{A}={cos}\left(\frac{\pi}{\mathrm{7}}\right).{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right).{cos}\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{B}\:={tan}\left(\frac{\pi}{\mathrm{7}}\right).{tan}\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right).{tan}\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right). \\ $$
Question Number 39026 Answers: 2 Comments: 0
$${find}\:{the}\:{roots}\:{of}\:\:\mathrm{8}{x}^{\mathrm{3}} \:−\mathrm{4}{x}−\mathrm{1}\:=\mathrm{0} \\ $$
Question Number 39025 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)=\:\frac{{cos}\left(\alpha{x}\right)}{{cosx}}\:\:\:\:\left(\mathrm{2}\pi\:{periodic}\:{even}\right) \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}. \\ $$
Question Number 39024 Answers: 0 Comments: 2
$${find}\:{the}\:{value}\:{of}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctan}\left(\mathrm{2}{x}\right)}{\sqrt{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }}\:{dx} \\ $$
Question Number 39023 Answers: 0 Comments: 1
$${let}\:{g}\left({x}\right)=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{arctan}\left({x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:\:\:{with}\:{x}>\mathrm{0} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{g}\left({x}\right)\:. \\ $$
Question Number 39022 Answers: 0 Comments: 1
$${let}\:{p}\left({x}\right)=\:\left(\mathrm{1}+{e}^{{i}\theta} {x}\right)^{{n}} \:−\left(\mathrm{1}−{e}^{{i}\theta} {x}\right)^{{n}} \:{with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{fctorize}\:{inside}\:{C}\left[{x}\right]\:{p}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{factorize}\:{inside}\:{R}\left[{x}\right]\:{p}\left({x}\right).\:\:\theta\:\in{R} \\ $$
Question Number 39021 Answers: 0 Comments: 0
$${calculate}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{sin}\left({narctanx}\right){dx}\:\:{with}\:{n}\:{integr}\:{natural}. \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:\sum_{{n}} \:\:{A}_{{n}} \\ $$
Question Number 39020 Answers: 1 Comments: 0
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}+\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}\right)}{\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}}\:{dx} \\ $$
Question Number 39019 Answers: 1 Comments: 3
$${calculate}\:\int\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{2}\right)\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{2}\right)\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)} \\ $$
Question Number 39018 Answers: 0 Comments: 0
$${find}\:{nature}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{\mathrm{2}+{cos}\left({n}\left[{x}\right]\right)} \\ $$
Question Number 39017 Answers: 0 Comments: 1
$${find}\:\:\:\int\:\:\frac{−\mathrm{2}{x}+\mathrm{3}}{{x}^{\mathrm{2}} \left(\:{x}^{\mathrm{3}} \:+\mathrm{8}\right)}{dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{−\mathrm{2}{x}+\mathrm{3}}{{x}^{\mathrm{2}} \left({x}^{\mathrm{3}} \:+\mathrm{8}\right)}{dx} \\ $$
Question Number 39016 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{sin}\left({nx}\right)}{{cosx}}{dx}\:\:{with}\:{n}\:{from}\:{N}\:. \\ $$
Question Number 39015 Answers: 0 Comments: 2
$${find}\:\:\int\:\:\:\:\:\:\frac{{dx}}{{x}\left(\mathrm{2}{x}+\mathrm{1}\right)\left(\mathrm{3}{x}+\mathrm{2}\right)} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\:\frac{{dx}}{{x}\left(\mathrm{2}{x}+\mathrm{1}\right)\left(\mathrm{3}{x}+\mathrm{2}\right)} \\ $$
Question Number 39013 Answers: 0 Comments: 1
$${Given}\:{the}\:{matrices} \\ $$$${A}\:=\:\begin{pmatrix}{\mathrm{3}}&{\mathrm{5}}\\{\mathrm{2}}&{\mathrm{4}}\end{pmatrix}\:{and}\:{I}\:=\:\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}\end{pmatrix} \\ $$$${find}\:{matrix}\:{B}\:{if}\: \\ $$$${BA}=\:{I} \\ $$$${find}\:{A}'\:{the}\:{reflection}\:{on}\:{the} \\ $$$${line}\:{y}\:=\:{x}\:{and}\:{A}''\:{the}\:{enlargement} \\ $$$${with}\:{matrix}\:\begin{pmatrix}{\mathrm{2}\:\:\:\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\end{pmatrix}. \\ $$
Pg 1595 Pg 1596 Pg 1597 Pg 1598 Pg 1599 Pg 1600 Pg 1601 Pg 1602 Pg 1603 Pg 1604
Terms of Service
Privacy Policy
Contact: info@tinkutara.com