Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1599
Question Number 49396 Answers: 0 Comments: 0
$${Here}\:{is}\:{floods}\:{of}\:{questions}...{number}\:{of}\:{batsman} \\ $$$${limited}\:{but}\:{bowlers}\:{are}\:{all}...\:{so}\:{pls}\:{limit}\:{your} \\ $$$${questions}...{if}\:{everybody}\:{posts}\:{questions}\:{who} \\ $$$${will}\:{answer}... \\ $$$${so}\:{pls}\:{limit}\:{questions}... \\ $$
Question Number 49394 Answers: 1 Comments: 1
Question Number 49392 Answers: 1 Comments: 0
Question Number 49389 Answers: 2 Comments: 0
$${for}\:{x}\neq\mathrm{0},{y}\neq\mathrm{0},\mathrm{xy}\neq−\mathrm{1},{f}\left(\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)+\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{y}}\right)=\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}\right)+\frac{\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}}{\mathrm{1}+\boldsymbol{\mathrm{xy}}} \\ $$$$\mathrm{1}.{find}:\:{f}\left({x}\right),\left[{if}\:{possible}\right] \\ $$$$\mathrm{2}.{find}\::{f}^{−\mathrm{1}} \left(\mathrm{1}\right),\left[{if}\:{possible}\right]. \\ $$
Question Number 49384 Answers: 1 Comments: 1
Question Number 49367 Answers: 5 Comments: 5
$$\left.\:\:\:\:{a}\right)\:\:\int\:\:\frac{\boldsymbol{\mathrm{dx}}}{\sqrt{\mathrm{1}−\boldsymbol{\mathrm{tgx}}}} \\ $$$$\left.\:\:\:\:{b}\right)\int\:\:\frac{\boldsymbol{\mathrm{dx}}}{\sqrt[{\mathrm{3}}]{\mathrm{1}−\boldsymbol{\mathrm{tgx}}}} \\ $$$$\left.\:\:\:\:{c}\right)\int\:\:\frac{\boldsymbol{\mathrm{dx}}}{\sqrt{\mathrm{1}−\sqrt{\mathrm{1}−\boldsymbol{\mathrm{x}}}}} \\ $$
Question Number 49365 Answers: 2 Comments: 1
Question Number 49362 Answers: 1 Comments: 7
Question Number 49360 Answers: 0 Comments: 4
Question Number 49359 Answers: 1 Comments: 0
Question Number 49358 Answers: 1 Comments: 0
Question Number 49357 Answers: 2 Comments: 1
Question Number 49356 Answers: 1 Comments: 1
Question Number 49355 Answers: 1 Comments: 0
Question Number 49354 Answers: 3 Comments: 0
Question Number 49344 Answers: 1 Comments: 1
$${let}\:\alpha>\mathrm{0}\:{calculate}\:\int_{−\infty} ^{+\infty} \:\left(\mathrm{1}+\alpha{i}\right)^{−{x}^{\mathrm{2}} } {dx}\:. \\ $$
Question Number 49343 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}}{dx}\:. \\ $$
Question Number 49342 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{e}^{{x}} }{\mathrm{1}+{x}}{dx}\:. \\ $$
Question Number 49340 Answers: 0 Comments: 0
Question Number 49333 Answers: 0 Comments: 0
Question Number 49331 Answers: 1 Comments: 2
$${Find}\:: \\ $$$${arg}\left(\:\frac{\left(\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{2}{i}\right)^{\mathrm{8}} }{\left(\mathrm{1}−{i}\right)^{\mathrm{6}} }\:\:+\:\frac{\left(\mathrm{1}+{i}\right)^{\mathrm{6}} }{\left(\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{2}{i}\right)^{\mathrm{8}} }\right)\:? \\ $$
Question Number 49326 Answers: 0 Comments: 0
$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}! \\ $$$$\begin{cases}{\mathrm{u}_{\mathrm{1}} ={a},\:\mathrm{u}_{\mathrm{2}} =\mathrm{b}}\\{\mathrm{u}_{\mathrm{n}+\mathrm{2}} =\mathrm{3}\sqrt[{\mathrm{5}}]{\mathrm{u}_{\mathrm{n}+\mathrm{1}} }+\mathrm{13}\sqrt[{\mathrm{5}}]{\mathrm{u}_{\mathrm{n}} }\:,\mathrm{n}\in\mathbb{N}^{\ast} }\end{cases} \\ $$$$\mathrm{show}\:\mathrm{that}\:\left(\mathrm{u}_{\mathrm{n}} \right)\:\mathrm{have}\:\mathrm{limit}\:\mathrm{and}\:\mathrm{find}\: \\ $$$$\mathrm{its}\:\mathrm{limit}. \\ $$
Question Number 49337 Answers: 0 Comments: 0
Question Number 49299 Answers: 3 Comments: 3
Question Number 49296 Answers: 2 Comments: 0
Question Number 49298 Answers: 4 Comments: 0
Pg 1594 Pg 1595 Pg 1596 Pg 1597 Pg 1598 Pg 1599 Pg 1600 Pg 1601 Pg 1602 Pg 1603
Terms of Service
Privacy Policy
Contact: info@tinkutara.com