Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1599

Question Number 49396    Answers: 0   Comments: 0

Here is floods of questions...number of batsman limited but bowlers are all... so pls limit your questions...if everybody posts questions who will answer... so pls limit questions...

$${Here}\:{is}\:{floods}\:{of}\:{questions}...{number}\:{of}\:{batsman} \\ $$$${limited}\:{but}\:{bowlers}\:{are}\:{all}...\:{so}\:{pls}\:{limit}\:{your} \\ $$$${questions}...{if}\:{everybody}\:{posts}\:{questions}\:{who} \\ $$$${will}\:{answer}... \\ $$$${so}\:{pls}\:{limit}\:{questions}... \\ $$

Question Number 49394    Answers: 1   Comments: 1

Question Number 49392    Answers: 1   Comments: 0

Question Number 49389    Answers: 2   Comments: 0

for x≠0,y≠0,xy≠−1,f(1)=(1/2) f(x)+f(y)=f(x+y)+((x+y)/(1+xy)) 1.find: f(x),[if possible] 2.find :f^(−1) (1),[if possible].

$${for}\:{x}\neq\mathrm{0},{y}\neq\mathrm{0},\mathrm{xy}\neq−\mathrm{1},{f}\left(\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)+\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{y}}\right)=\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}\right)+\frac{\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}}{\mathrm{1}+\boldsymbol{\mathrm{xy}}} \\ $$$$\mathrm{1}.{find}:\:{f}\left({x}\right),\left[{if}\:{possible}\right] \\ $$$$\mathrm{2}.{find}\::{f}^{−\mathrm{1}} \left(\mathrm{1}\right),\left[{if}\:{possible}\right]. \\ $$

Question Number 49384    Answers: 1   Comments: 1

Question Number 49367    Answers: 5   Comments: 5

a) ∫ (dx/(√(1−tgx))) b)∫ (dx/((1−tgx))^(1/3) ) c)∫ (dx/(√(1−(√(1−x)))))

$$\left.\:\:\:\:{a}\right)\:\:\int\:\:\frac{\boldsymbol{\mathrm{dx}}}{\sqrt{\mathrm{1}−\boldsymbol{\mathrm{tgx}}}} \\ $$$$\left.\:\:\:\:{b}\right)\int\:\:\frac{\boldsymbol{\mathrm{dx}}}{\sqrt[{\mathrm{3}}]{\mathrm{1}−\boldsymbol{\mathrm{tgx}}}} \\ $$$$\left.\:\:\:\:{c}\right)\int\:\:\frac{\boldsymbol{\mathrm{dx}}}{\sqrt{\mathrm{1}−\sqrt{\mathrm{1}−\boldsymbol{\mathrm{x}}}}} \\ $$

Question Number 49365    Answers: 2   Comments: 1

Question Number 49362    Answers: 1   Comments: 7

Question Number 49360    Answers: 0   Comments: 4

Question Number 49359    Answers: 1   Comments: 0

Question Number 49358    Answers: 1   Comments: 0

Question Number 49357    Answers: 2   Comments: 1

Question Number 49356    Answers: 1   Comments: 1

Question Number 49355    Answers: 1   Comments: 0

Question Number 49354    Answers: 3   Comments: 0

Question Number 49344    Answers: 1   Comments: 1

let α>0 calculate ∫_(−∞) ^(+∞) (1+αi)^(−x^2 ) dx .

$${let}\:\alpha>\mathrm{0}\:{calculate}\:\int_{−\infty} ^{+\infty} \:\left(\mathrm{1}+\alpha{i}\right)^{−{x}^{\mathrm{2}} } {dx}\:. \\ $$

Question Number 49343    Answers: 0   Comments: 1

find ∫_0 ^1 ((ln(x))/(1+x))dx .

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}}{dx}\:. \\ $$

Question Number 49342    Answers: 0   Comments: 0

find ∫_0 ^1 (e^x /(1+x))dx .

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{e}^{{x}} }{\mathrm{1}+{x}}{dx}\:. \\ $$

Question Number 49340    Answers: 0   Comments: 0

Question Number 49333    Answers: 0   Comments: 0

Question Number 49331    Answers: 1   Comments: 2

Find : arg( (((2(√3)+2i)^8 )/((1−i)^6 )) + (((1+i)^6 )/((2(√3)−2i)^8 ))) ?

$${Find}\:: \\ $$$${arg}\left(\:\frac{\left(\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{2}{i}\right)^{\mathrm{8}} }{\left(\mathrm{1}−{i}\right)^{\mathrm{6}} }\:\:+\:\frac{\left(\mathrm{1}+{i}\right)^{\mathrm{6}} }{\left(\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{2}{i}\right)^{\mathrm{8}} }\right)\:? \\ $$

Question Number 49326    Answers: 0   Comments: 0

please help me! { ((u_1 =a, u_2 =b)),((u_(n+2) =3(u_(n+1) )^(1/5) +13(u_n )^(1/5) ,n∈N^∗ )) :} show that (u_n ) have limit and find its limit.

$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}! \\ $$$$\begin{cases}{\mathrm{u}_{\mathrm{1}} ={a},\:\mathrm{u}_{\mathrm{2}} =\mathrm{b}}\\{\mathrm{u}_{\mathrm{n}+\mathrm{2}} =\mathrm{3}\sqrt[{\mathrm{5}}]{\mathrm{u}_{\mathrm{n}+\mathrm{1}} }+\mathrm{13}\sqrt[{\mathrm{5}}]{\mathrm{u}_{\mathrm{n}} }\:,\mathrm{n}\in\mathbb{N}^{\ast} }\end{cases} \\ $$$$\mathrm{show}\:\mathrm{that}\:\left(\mathrm{u}_{\mathrm{n}} \right)\:\mathrm{have}\:\mathrm{limit}\:\mathrm{and}\:\mathrm{find}\: \\ $$$$\mathrm{its}\:\mathrm{limit}. \\ $$

Question Number 49337    Answers: 0   Comments: 0

Question Number 49299    Answers: 3   Comments: 3

Question Number 49296    Answers: 2   Comments: 0

Question Number 49298    Answers: 4   Comments: 0

  Pg 1594      Pg 1595      Pg 1596      Pg 1597      Pg 1598      Pg 1599      Pg 1600      Pg 1601      Pg 1602      Pg 1603   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com