Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1598

Question Number 38722    Answers: 0   Comments: 1

let f(x)= (x+1)e^(−x) and g(x)=ln(2+x^2 ) 1) calculate fog(x) and gof(x) 2) calculate (fog)^′ (x) and (gof)^′ (x).

$${let}\:{f}\left({x}\right)=\:\left({x}+\mathrm{1}\right){e}^{−{x}} \:\:{and}\:\:{g}\left({x}\right)={ln}\left(\mathrm{2}+{x}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{fog}\left({x}\right)\:{and}\:{gof}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\left({fog}\right)^{'} \left({x}\right)\:{and}\:\left({gof}\right)^{'} \left({x}\right). \\ $$

Question Number 38721    Answers: 0   Comments: 4

let f(x)=(√(1+2x^2 )) −x(√2) +3 1) calculate lim_(x→+∞) f(x) and lim_(x→−∞) f(x) 2)calculate lim_(x→+∞) ((f(x))/x) and lim_(x→−∞) ((f(x))/x) 3)give the assymtote to graph C_f 4) give the assymtote to C_f at point A(0,f(0)) 5) find f^(−1) (x) and calculate (f^(−1) )^′ (x) 6) calculate ∫_0 ^1 f(x)dx.

$${let}\:\:{f}\left({x}\right)=\sqrt{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }\:\:−{x}\sqrt{\mathrm{2}}\:\:+\mathrm{3} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{lim}_{{x}\rightarrow+\infty} \:{f}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow−\infty} {f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:{lim}_{{x}\rightarrow+\infty} \:\:\frac{{f}\left({x}\right)}{{x}}\:{and}\:{lim}_{{x}\rightarrow−\infty} \:\:\frac{{f}\left({x}\right)}{{x}} \\ $$$$\left.\mathrm{3}\right){give}\:{the}\:{assymtote}\:{to}\:{graph}\:{C}_{{f}} \\ $$$$\left.\mathrm{4}\right)\:{give}\:{the}\:{assymtote}\:{to}\:{C}_{{f}} \:\:{at}\:{point}\:{A}\left(\mathrm{0},{f}\left(\mathrm{0}\right)\right) \\ $$$$\left.\mathrm{5}\right)\:{find}\:{f}^{−\mathrm{1}} \left({x}\right)\:{and}\:{calculate}\:\left({f}^{−\mathrm{1}} \right)^{'} \left({x}\right) \\ $$$$\left.\mathrm{6}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}. \\ $$

Question Number 38718    Answers: 0   Comments: 3

1) find f(x)=∫_0 ^π ln(2+x cosθ)dθ 2) calculate ∫_0 ^π ln(2 +cosθ)dθ

$$\left.\mathrm{1}\right)\:{find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\pi} \:{ln}\left(\mathrm{2}+{x}\:{cos}\theta\right){d}\theta \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\pi} \:{ln}\left(\mathrm{2}\:\:+{cos}\theta\right){d}\theta \\ $$$$ \\ $$

Question Number 38720    Answers: 0   Comments: 2

find ∫ (((√(x+1)) −(√(x−1)))/((√(x+1)) −(√(x−1))))dx

$${find}\:\:\:\int\:\:\:\:\:\frac{\sqrt{{x}+\mathrm{1}}\:−\sqrt{{x}−\mathrm{1}}}{\sqrt{{x}+\mathrm{1}}\:−\sqrt{{x}−\mathrm{1}}}{dx} \\ $$

Question Number 38719    Answers: 1   Comments: 0

find ∫ ln((√x) +(√(x+1)))dx

$${find}\:\:\:\int\:\:{ln}\left(\sqrt{{x}}\:+\sqrt{{x}+\mathrm{1}}\right){dx} \\ $$

Question Number 38716    Answers: 1   Comments: 1

calculate ∫_2 ^5 (dx/((x +1−[x])^2 ))

$${calculate}\:\:\:\int_{\mathrm{2}} ^{\mathrm{5}} \:\:\:\:\:\frac{{dx}}{\left({x}\:+\mathrm{1}−\left[{x}\right]\right)^{\mathrm{2}} } \\ $$

Question Number 38714    Answers: 1   Comments: 1

calculate ∫_1 ^6 (((−1)^([x]) )/(1+x^2 [x]))dx

$${calculate}\:\:\:\int_{\mathrm{1}} ^{\mathrm{6}} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{\mathrm{1}+{x}^{\mathrm{2}} \left[{x}\right]}{dx} \\ $$

Question Number 38707    Answers: 0   Comments: 3

Question Number 38706    Answers: 0   Comments: 4

let f(x)= ∫_0 ^(π/2) (dθ/(1+x e^(iθ) )) with ∣x∣<1 1) developp f(x) at integr serie 2) calculate f(x) 3) find the value of ∫_0 ^(π/2) (e^(iθ) /((1+x e^(iθ) )^2 )) 4) calculate ∫_0 ^(π/2) (dθ/(2 +e^(iθ) ))

$${let}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{d}\theta}{\mathrm{1}+{x}\:{e}^{{i}\theta} }\:\:\:\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{developp}\:{f}\left({x}\right)\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{e}^{{i}\theta} }{\left(\mathrm{1}+{x}\:{e}^{{i}\theta} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{d}\theta}{\mathrm{2}\:+{e}^{{i}\theta} } \\ $$

Question Number 38699    Answers: 1   Comments: 0

Question Number 38696    Answers: 1   Comments: 0

Question Number 38692    Answers: 1   Comments: 0

If f(x)=2x+1 g(x)=(√x)+3 h(x)=(1/2) then hog^2 of (2)=?

$${If}\:{f}\left({x}\right)=\mathrm{2}{x}+\mathrm{1} \\ $$$${g}\left({x}\right)=\sqrt{{x}}+\mathrm{3} \\ $$$${h}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${then}\:{hog}^{\mathrm{2}} \:{of}\:\left(\mathrm{2}\right)=? \\ $$

Question Number 38675    Answers: 1   Comments: 3

Question Number 38679    Answers: 3   Comments: 0

Question Number 38651    Answers: 1   Comments: 0

If ∫_0 ^1 e^(−x^2 ) dx = a , then find the value of ∫_0 ^1 x^2 e^(−x^2 ) dx in terms of ′a′ ?

$$\mathrm{If}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{e}^{−{x}^{\mathrm{2}} } {dx}\:=\:{a}\:,\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} {e}^{−{x}^{\mathrm{2}} } {dx}\:{in}\:{terms}\:{of}\:'{a}'\:? \\ $$

Question Number 38643    Answers: 1   Comments: 4

calculate lim_(n→+∞) ((1+2+3+...+n)/(1+2^4 +3^4 +...+n^4 ))

$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\frac{\mathrm{1}+\mathrm{2}+\mathrm{3}+...+{n}}{\mathrm{1}+\mathrm{2}^{\mathrm{4}} \:+\mathrm{3}^{\mathrm{4}} \:+...+{n}^{\mathrm{4}} } \\ $$

Question Number 38642    Answers: 0   Comments: 3

calculate lim_(n→+∞) ((1 +2^2 +3^2 +....+n^2 )/(1+2^4 +3^4 +....+n^4 ))

$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{\mathrm{1}\:+\mathrm{2}^{\mathrm{2}} \:+\mathrm{3}^{\mathrm{2}} \:+....+{n}^{\mathrm{2}} }{\mathrm{1}+\mathrm{2}^{\mathrm{4}} \:+\mathrm{3}^{\mathrm{4}} \:+....+{n}^{\mathrm{4}} } \\ $$

Question Number 38641    Answers: 0   Comments: 1

calculate lim_(n→+∞) ((1+2^3 +3^3 +....+n^3 )/(1+2^4 +3^4 +...+n^4 )) .

$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\frac{\mathrm{1}+\mathrm{2}^{\mathrm{3}} \:+\mathrm{3}^{\mathrm{3}} \:+....+{n}^{\mathrm{3}} }{\mathrm{1}+\mathrm{2}^{\mathrm{4}} \:+\mathrm{3}^{\mathrm{4}} \:+...+{n}^{\mathrm{4}} }\:. \\ $$

Question Number 38640    Answers: 0   Comments: 1

calculate Σ_(k=1) ^n k^4 interms of n.

$${calculate}\:\sum_{{k}=\mathrm{1}} ^{{n}} {k}^{\mathrm{4}} \:\:{interms}\:{of}\:{n}. \\ $$

Question Number 38636    Answers: 1   Comments: 0

Three variables u,v and w are related such that u varies directly as v and inversely as the square of w. If v increases by 15% and w decreased by 10%, find the percentage change in u.

$$\mathrm{Three}\:\mathrm{variables}\:\mathrm{u},\mathrm{v}\:\mathrm{and}\:\mathrm{w}\:\mathrm{are}\:\mathrm{related}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{u}\:\mathrm{varies}\:\mathrm{directly}\:\mathrm{as}\:\mathrm{v}\:\mathrm{and}\:\mathrm{inversely}\:\mathrm{as}\:\mathrm{the}\:\mathrm{square}\:\mathrm{of}\: \\ $$$$\mathrm{w}.\:\mathrm{If}\:\mathrm{v}\:\mathrm{increases}\:\mathrm{by}\:\mathrm{15\%}\:\mathrm{and}\:\mathrm{w}\:\mathrm{decreased}\:\mathrm{by}\:\mathrm{10\%}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{percentage}\:\mathrm{change}\:\mathrm{in}\:\mathrm{u}. \\ $$

Question Number 38618    Answers: 1   Comments: 2

Question Number 38613    Answers: 1   Comments: 0

The radius of the largest circle which passes through (1,2) and (3,4) and lies completely in the first quadrant is A) 3 B) 2 C) (√6) D) 2(√5) I got the answer as 2 but the answer given is 2(√5).

$$\mathrm{The}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{circle}\:\mathrm{which} \\ $$$$\mathrm{passes}\:\mathrm{through}\:\left(\mathrm{1},\mathrm{2}\right)\:\mathrm{and}\:\left(\mathrm{3},\mathrm{4}\right)\:\mathrm{and}\:\mathrm{lies} \\ $$$$\mathrm{completely}\:\mathrm{in}\:\mathrm{the}\:\mathrm{first}\:\mathrm{quadrant}\:\mathrm{is} \\ $$$$\left.\mathrm{A}\right)\:\mathrm{3} \\ $$$$\left.\mathrm{B}\right)\:\mathrm{2} \\ $$$$\left.\mathrm{C}\right)\:\sqrt{\mathrm{6}} \\ $$$$\left.\mathrm{D}\right)\:\mathrm{2}\sqrt{\mathrm{5}} \\ $$$$\mathrm{I}\:\mathrm{got}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{as}\:\mathrm{2}\:\mathrm{but}\:\mathrm{the}\:\mathrm{answer}\: \\ $$$$\mathrm{given}\:\mathrm{is}\:\mathrm{2}\sqrt{\mathrm{5}}. \\ $$

Question Number 39491    Answers: 0   Comments: 0

Question Number 38600    Answers: 3   Comments: 1

Question Number 38593    Answers: 1   Comments: 3

Question Number 38587    Answers: 2   Comments: 2

solve for x: e^x + e^x^2 + e^x^3 = 3 + x + x^2 + x^3

$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x}:\:\:\:\:\:\mathrm{e}^{\mathrm{x}} \:+\:\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \:+\:\mathrm{e}^{\mathrm{x}^{\mathrm{3}} } \:=\:\:\mathrm{3}\:+\:\mathrm{x}\:+\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}^{\mathrm{3}} \\ $$

  Pg 1593      Pg 1594      Pg 1595      Pg 1596      Pg 1597      Pg 1598      Pg 1599      Pg 1600      Pg 1601      Pg 1602   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com