Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1596
Question Number 49343 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}}{dx}\:. \\ $$
Question Number 49342 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{e}^{{x}} }{\mathrm{1}+{x}}{dx}\:. \\ $$
Question Number 49340 Answers: 0 Comments: 0
Question Number 49333 Answers: 0 Comments: 0
Question Number 49331 Answers: 1 Comments: 2
$${Find}\:: \\ $$$${arg}\left(\:\frac{\left(\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{2}{i}\right)^{\mathrm{8}} }{\left(\mathrm{1}−{i}\right)^{\mathrm{6}} }\:\:+\:\frac{\left(\mathrm{1}+{i}\right)^{\mathrm{6}} }{\left(\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{2}{i}\right)^{\mathrm{8}} }\right)\:? \\ $$
Question Number 49326 Answers: 0 Comments: 0
$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}! \\ $$$$\begin{cases}{\mathrm{u}_{\mathrm{1}} ={a},\:\mathrm{u}_{\mathrm{2}} =\mathrm{b}}\\{\mathrm{u}_{\mathrm{n}+\mathrm{2}} =\mathrm{3}\sqrt[{\mathrm{5}}]{\mathrm{u}_{\mathrm{n}+\mathrm{1}} }+\mathrm{13}\sqrt[{\mathrm{5}}]{\mathrm{u}_{\mathrm{n}} }\:,\mathrm{n}\in\mathbb{N}^{\ast} }\end{cases} \\ $$$$\mathrm{show}\:\mathrm{that}\:\left(\mathrm{u}_{\mathrm{n}} \right)\:\mathrm{have}\:\mathrm{limit}\:\mathrm{and}\:\mathrm{find}\: \\ $$$$\mathrm{its}\:\mathrm{limit}. \\ $$
Question Number 49337 Answers: 0 Comments: 0
Question Number 49299 Answers: 3 Comments: 3
Question Number 49296 Answers: 2 Comments: 0
Question Number 49298 Answers: 4 Comments: 0
Question Number 49294 Answers: 1 Comments: 0
Question Number 49283 Answers: 1 Comments: 0
Question Number 49280 Answers: 1 Comments: 3
Question Number 49272 Answers: 2 Comments: 0
$${Z}\epsilon\mathbb{C}\:{satisfies}\:{the}\:{condition}\:\mid{Z}\mid\geqslant\mathrm{3}. \\ $$$${Then}\:{find}\:{the}\:{least}\:{value}\:{of}\:\mid{Z}+\frac{\mathrm{1}}{{Z}}\mid\:? \\ $$
Question Number 49279 Answers: 2 Comments: 1
Question Number 49256 Answers: 2 Comments: 0
Question Number 49253 Answers: 2 Comments: 0
Question Number 49252 Answers: 1 Comments: 0
Question Number 49251 Answers: 5 Comments: 1
Question Number 49250 Answers: 1 Comments: 0
$${Apply}\:{derivative}\:{criteria} \\ $$$${F}\left({x}\right)={x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{3} \\ $$
Question Number 49248 Answers: 1 Comments: 0
$$\left.\mathrm{1}\right)\:{solve}\:{z}^{\mathrm{4}} =\mathrm{1}+{i}\sqrt{\mathrm{3}} \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{p}\left({x}\right)={x}^{\mathrm{4}} −\mathrm{1}−{i}\sqrt{\mathrm{3}}{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right){factorze}\:{inside}\:{R}\left[{x}\right]\:{the}\:{polynom}\:{p}\left({x}\right). \\ $$
Question Number 49244 Answers: 1 Comments: 0
$${let}\:{w}\:{from}\:{C}\:{and}\:{w}^{{n}} \:=\mathrm{1}\:{find}\:{the}\:{value}\:{of}\: \\ $$$${S}\:=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{C}_{{n}} ^{{k}} \:{w}^{{k}} \:. \\ $$
Question Number 49246 Answers: 0 Comments: 0
$${simplify}\:\:\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({e}^{{i}\frac{\mathrm{4}{k}\pi}{{n}}} \:−\mathrm{2}{cos}\theta\:{e}^{\frac{{i}\mathrm{2}\pi}{{n}}} \:+\mathrm{1}\right) \\ $$
Question Number 49245 Answers: 0 Comments: 0
$${solve}\:{inside}\:{C}:\:\mathrm{1}+\left({z}−\mathrm{1}\right)^{\mathrm{3}} \:+\left({z}−\mathrm{1}\right)^{\mathrm{6}} =\mathrm{0} \\ $$
Question Number 49242 Answers: 0 Comments: 0
$${let}\:{z}\:{from}\:{C}\:{and}\:\theta\:{from}\:{R}\:{and}\:{z}^{\mathrm{2}} \:+\mathrm{2}{zcos}\theta\:+\mathrm{1}\:=\mathrm{0}\:{find}\:{the}\:{value}\:{of} \\ $$$${z}^{\mathrm{2}{n}} \:+\mathrm{2}{zcos}\left({n}\theta\right)+\mathrm{1}\:. \\ $$$$ \\ $$
Question Number 49241 Answers: 0 Comments: 0
$${let}\:{z}\:={r}\:{e}^{{i}\theta} \:\:\:{find}\:{the}\:{value}\:{of}\: \\ $$$${P}_{{n}} =\left({z}+\overset{−} {{z}}\right)\left({z}^{\mathrm{2}} \:+\overset{−^{\mathrm{2}} } {{z}}\right).....\left({z}^{{n}} \:+\overset{−^{{n}} } {{z}}\right)\:. \\ $$
Pg 1591 Pg 1592 Pg 1593 Pg 1594 Pg 1595 Pg 1596 Pg 1597 Pg 1598 Pg 1599 Pg 1600
Terms of Service
Privacy Policy
Contact: info@tinkutara.com