Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1595

Question Number 49118    Answers: 1   Comments: 0

Given that the equation 3x^2 +mx+n=0 has roots α + (1/β) and β + (1/(α )) find the value of m and n

$${Given}\:{that}\:{the}\:{equation}\:\:\mathrm{3}{x}^{\mathrm{2}} +{mx}+{n}=\mathrm{0}\:{has}\:{roots}\:\alpha\:+\:\frac{\mathrm{1}}{\beta}\:{and} \\ $$$$\beta\:+\:\frac{\mathrm{1}}{\alpha\:}\:{find}\:{the}\:{value}\:{of}\:\:{m}\:{and}\:{n} \\ $$$$ \\ $$

Question Number 49116    Answers: 1   Comments: 2

Give a proof for : 2 = (√(2 + (√(2 + (√( 2 + (√(2 + (√( 2 ... ))))))))))

$$\mathrm{Give}\:\mathrm{a}\:\mathrm{proof}\:\mathrm{for}\:: \\ $$$$\mathrm{2}\:=\:\sqrt{\mathrm{2}\:+\:\sqrt{\mathrm{2}\:+\:\sqrt{\:\mathrm{2}\:+\:\sqrt{\mathrm{2}\:+\:\sqrt{\:\mathrm{2}\:...\:}}}}} \\ $$

Question Number 49112    Answers: 0   Comments: 1

Question Number 49111    Answers: 1   Comments: 0

Question Number 49101    Answers: 0   Comments: 0

Question Number 49100    Answers: 0   Comments: 0

Question Number 49099    Answers: 0   Comments: 0

Question Number 49097    Answers: 1   Comments: 0

Question Number 49096    Answers: 1   Comments: 0

Question Number 49095    Answers: 1   Comments: 0

prove the existence of n integrs naturals x_1 ,x_2 ,....x_n with x_i ≠x_j for i≠j and (1/x_1 ) +(1/x_2 ) +....+(1/x_n ) =1 .

$${prove}\:{the}\:{existence}\:{of}\:{n}\:{integrs}\:{naturals}\:{x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,....{x}_{{n}} \:\:\:\:{with}\:{x}_{{i}} \neq{x}_{{j}} {for}\:{i}\neq{j} \\ $$$${and}\:\frac{\mathrm{1}}{{x}_{\mathrm{1}} }\:+\frac{\mathrm{1}}{{x}_{\mathrm{2}} }\:+....+\frac{\mathrm{1}}{{x}_{{n}} }\:=\mathrm{1}\:. \\ $$

Question Number 49094    Answers: 0   Comments: 1

calculate ∫_(−π) ^π (x^2 /(sin(sinx)+(√(1+sin^2 (sinx)))))dx

$${calculate}\:\int_{−\pi} ^{\pi} \:\:\frac{{x}^{\mathrm{2}} }{{sin}\left({sinx}\right)+\sqrt{\mathrm{1}+{sin}^{\mathrm{2}} \left({sinx}\right)}}{dx} \\ $$

Question Number 49093    Answers: 2   Comments: 0

Question Number 49092    Answers: 0   Comments: 0

Question Number 49090    Answers: 0   Comments: 1

How do you create a new math page without erasing the current page ...

$${How}\:{do}\:{you}\:{create}\:{a}\:{new}\:{math}\:{page}\:{without}\:{erasing}\:{the}\:{current}\:{page}\:... \\ $$

Question Number 49083    Answers: 0   Comments: 0

Question Number 49078    Answers: 1   Comments: 0

Question Number 49077    Answers: 0   Comments: 0

Question Number 49064    Answers: 1   Comments: 0

solve for 0°≤θ≤2π the equation cos(θ + (π/3)) = (1/2)

$${solve}\:{for}\:\mathrm{0}°\leqslant\theta\leqslant\mathrm{2}\pi\:{the}\:{equation} \\ $$$${cos}\left(\theta\:+\:\frac{\pi}{\mathrm{3}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Question Number 49061    Answers: 2   Comments: 0

The numerical value of tan (2 tan^(−1) (1/5) − (π/4)) is

$$\mathrm{The}\:\mathrm{numerical}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\mathrm{tan}\:\left(\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{5}}\:−\:\frac{\pi}{\mathrm{4}}\right)\:\:\mathrm{is} \\ $$

Question Number 49060    Answers: 2   Comments: 0

Question Number 49037    Answers: 0   Comments: 0

Question Number 49036    Answers: 1   Comments: 4

Question Number 49035    Answers: 0   Comments: 0

Question Number 49034    Answers: 1   Comments: 0

Question Number 49032    Answers: 2   Comments: 0

∫(1/(x^3 +1))dx=??

$$\int\frac{\mathrm{1}}{{x}^{\mathrm{3}} +\mathrm{1}}{dx}=?? \\ $$

Question Number 49028    Answers: 0   Comments: 0

n^2 −1 est olympique

$${n}^{\mathrm{2}} −\mathrm{1}\:{est}\:{olympique} \\ $$

  Pg 1590      Pg 1591      Pg 1592      Pg 1593      Pg 1594      Pg 1595      Pg 1596      Pg 1597      Pg 1598      Pg 1599   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com