Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1591

Question Number 47515    Answers: 1   Comments: 1

Question Number 47513    Answers: 1   Comments: 1

Question Number 47510    Answers: 0   Comments: 1

the curve y = 3x^2 +4 (x=2 and x=3) is rotated about the x.axis.find the volume of the solid generated.Leave your answer in terms of π.

$${the}\:{curve}\:{y}\:=\:\mathrm{3}{x}^{\mathrm{2}} \:+\mathrm{4}\:\left({x}=\mathrm{2}\:{and}\:{x}=\mathrm{3}\right)\:{is}\:{rotated}\:{about}\:{the}\: \\ $$$${x}.{axis}.{find}\:{the}\:{volume}\:{of}\:{the}\:{solid}\:{generated}.{Leave}\:{your} \\ $$$${answer}\:{in}\:{terms}\:{of}\:\pi. \\ $$

Question Number 47508    Answers: 0   Comments: 1

Question Number 47500    Answers: 0   Comments: 0

Question Number 47497    Answers: 1   Comments: 1

Question Number 47481    Answers: 1   Comments: 0

Three six−faced dice are thrown together. The probability that the sum of the numbers appearing on the dice is k (3≤ k ≤ 8) is

$$\mathrm{Three}\:\mathrm{six}−\mathrm{faced}\:\mathrm{dice}\:\mathrm{are}\:\mathrm{thrown} \\ $$$$\mathrm{together}.\:\mathrm{The}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{numbers}\:\mathrm{appearing}\:\mathrm{on}\:\mathrm{the}\:\mathrm{dice} \\ $$$$\mathrm{is}\:\:{k}\:\left(\mathrm{3}\leqslant\:{k}\:\leqslant\:\mathrm{8}\right)\:\mathrm{is} \\ $$

Question Number 47480    Answers: 1   Comments: 0

Question Number 47477    Answers: 1   Comments: 0

Let n ∈ Z^+ f(1) = 1 f(2n) = f(n) f(2n+1) = (f(n))^2 − 2 f(1) + f(2) + f(3) + …+ f(100) = ...

$${Let}\:\:{n}\:\:\in\:\:\mathbb{Z}^{+} \\ $$$${f}\left(\mathrm{1}\right)\:\:=\:\:\mathrm{1} \\ $$$${f}\left(\mathrm{2}{n}\right)\:\:=\:\:{f}\left({n}\right) \\ $$$${f}\left(\mathrm{2}{n}+\mathrm{1}\right)\:\:=\:\:\left({f}\left({n}\right)\right)^{\mathrm{2}} \:−\:\mathrm{2} \\ $$$${f}\left(\mathrm{1}\right)\:+\:{f}\left(\mathrm{2}\right)\:+\:{f}\left(\mathrm{3}\right)\:+\:\ldots+\:{f}\left(\mathrm{100}\right)\:\:=\:\:... \\ $$

Question Number 47476    Answers: 2   Comments: 1

How may I prove the following theorem ? ((a + b)/2) ≥ (√( ab )) Thank you

$$\mathrm{How}\:\mathrm{may}\:\mathrm{I}\:\mathrm{prove}\:\mathrm{the}\:\mathrm{following}\:\mathrm{theorem}\:? \\ $$$$ \\ $$$$\:\:\:\frac{\boldsymbol{{a}}\:+\:\boldsymbol{{b}}}{\mathrm{2}}\:\:\:\geqslant\:\:\sqrt{\:\boldsymbol{{ab}}\:\:} \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you} \\ $$

Question Number 47471    Answers: 1   Comments: 2

Question Number 47467    Answers: 0   Comments: 1

Question Number 47457    Answers: 1   Comments: 0

A straight line through (2,2) intersects lines (√3)x+y=0 and (√3)x−y=0 at pts. A & B respectively. Find equation of line AB so that ΔOAB is equilateral?

$${A}\:{straight}\:{line}\:{through}\:\left(\mathrm{2},\mathrm{2}\right)\:{intersects} \\ $$$${lines}\:\sqrt{\mathrm{3}}{x}+{y}=\mathrm{0}\:{and}\:\sqrt{\mathrm{3}}{x}−{y}=\mathrm{0}\:{at}\:{pts}. \\ $$$${A}\:\&\:{B}\:{respectively}.\:{Find}\:{equation} \\ $$$${of}\:{line}\:{AB}\:{so}\:{that}\:\Delta{OAB}\:{is}\:{equilateral}? \\ $$

Question Number 47455    Answers: 0   Comments: 1

Question Number 47454    Answers: 1   Comments: 0

prove that the locus of middle point of the normal chord of the parabola y^2 =4ax is (y^2 /(2a))+((4a^3 )/y^2 )=x−2a

$$\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{locus} \\ $$$$\mathrm{of}\:\mathrm{middle}\:\mathrm{point}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{normal}\:\mathrm{chord}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{parabola}\:\mathrm{y}^{\mathrm{2}} =\mathrm{4ax}\:\mathrm{is} \\ $$$$\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{2a}}+\frac{\mathrm{4a}^{\mathrm{3}} }{\mathrm{y}^{\mathrm{2}} }=\mathrm{x}−\mathrm{2a} \\ $$

Question Number 47449    Answers: 1   Comments: 1

Question Number 47447    Answers: 1   Comments: 0

Question Number 47438    Answers: 2   Comments: 0

Find locus of a point P which moves such that its distance from the line y=(√3)x−7 is same as its distance from (2(√3),−1) ?

$${Find}\:{locus}\:{of}\:{a}\:{point}\:{P}\:{which}\:{moves} \\ $$$${such}\:{that}\:{its}\:{distance}\:{from}\:{the}\:{line} \\ $$$${y}=\sqrt{\mathrm{3}}{x}−\mathrm{7}\:{is}\:{same}\:{as}\:{its}\:{distance}\:{from} \\ $$$$\left(\mathrm{2}\sqrt{\mathrm{3}},−\mathrm{1}\right)\:? \\ $$

Question Number 47433    Answers: 1   Comments: 6

Find the square root of − 5 − 12i, hence solve: z^2 − (4 + i)z + (5 + 6i) = 0

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{square}\:\mathrm{root}\:\mathrm{of}\:\:−\:\mathrm{5}\:−\:\mathrm{12i},\:\:\mathrm{hence}\:\mathrm{solve}:\:\:\mathrm{z}^{\mathrm{2}} \:−\:\left(\mathrm{4}\:+\:\mathrm{i}\right)\mathrm{z}\:+\:\left(\mathrm{5}\:+\:\mathrm{6i}\right)\:=\:\mathrm{0} \\ $$

Question Number 47432    Answers: 0   Comments: 1

what is the nth derivative of e^(ax) sin (bx+c)?

$$ \\ $$$${what}\:{is}\:{the}\:{nth}\:{derivative}\:{of} \\ $$$${e}^{{ax}} \mathrm{sin}\:\left({bx}+{c}\right)? \\ $$

Question Number 47425    Answers: 1   Comments: 1

Question Number 47422    Answers: 1   Comments: 1

Question Number 47413    Answers: 1   Comments: 0

Calculate: 1999^2 − 1998^2 + 1997^2 − 1996^2 ... − 2^2 + 1^2

$$\mathrm{Calculate}:\:\:\mathrm{1999}^{\mathrm{2}} \:−\:\mathrm{1998}^{\mathrm{2}} \:+\:\mathrm{1997}^{\mathrm{2}} \:−\:\mathrm{1996}^{\mathrm{2}} \:...\:−\:\mathrm{2}^{\mathrm{2}} \:+\:\mathrm{1}^{\mathrm{2}} \\ $$

Question Number 47407    Answers: 1   Comments: 0

Question Number 47402    Answers: 2   Comments: 2

Question Number 47401    Answers: 2   Comments: 1

  Pg 1586      Pg 1587      Pg 1588      Pg 1589      Pg 1590      Pg 1591      Pg 1592      Pg 1593      Pg 1594      Pg 1595   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com