Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1591

Question Number 48777    Answers: 0   Comments: 13

Question Number 48769    Answers: 1   Comments: 0

Question Number 48763    Answers: 2   Comments: 1

Question Number 48757    Answers: 2   Comments: 2

Question Number 48750    Answers: 1   Comments: 0

i need explanation for the division when 20751 is devided by 25 answer is 830.04..i need clarification why this red coloured zero (0) is coming when division is done by simple division...

$${i}\:{need}\:{explanation}\:{for}\:{the}\:{division}\:{when}\:\mathrm{20751} \\ $$$${is}\:{devided}\:{by}\:\mathrm{25} \\ $$$${answer}\:{is}\:\mathrm{830}.\mathrm{04}..{i}\:{need}\:{clarification}\:{why} \\ $$$${this}\:{red}\:{coloured}\:{zero}\:\left(\mathrm{0}\right)\:{is}\:{coming}\: \\ $$$${when}\:{division}\:{is}\:{done}\:{by}\:{simple}\:{division}... \\ $$

Question Number 48748    Answers: 0   Comments: 0

Question Number 48745    Answers: 1   Comments: 0

Question Number 48744    Answers: 2   Comments: 0

Question Number 48742    Answers: 1   Comments: 0

Question Number 48741    Answers: 1   Comments: 0

Question Number 48740    Answers: 2   Comments: 1

Question Number 48739    Answers: 1   Comments: 0

Find the maximum of f(x)=cos x + ((λ tan x−1)/(tan x−λ)) sin x in terms of λ with λ>1 and 0<x<tan^(−1) λ

$${Find}\:{the}\:{maximum}\:{of} \\ $$$${f}\left({x}\right)=\mathrm{cos}\:{x}\:+\:\frac{\lambda\:\mathrm{tan}\:{x}−\mathrm{1}}{\mathrm{tan}\:{x}−\lambda}\:\mathrm{sin}\:{x} \\ $$$${in}\:{terms}\:{of}\:\lambda \\ $$$${with}\:\lambda>\mathrm{1}\:{and}\:\mathrm{0}<{x}<\mathrm{tan}^{−\mathrm{1}} \lambda \\ $$

Question Number 48736    Answers: 1   Comments: 0

If P (A∪B)= (3/4), P(A^ )=(2/3), then P (A^ ∩B)=

$$\mathrm{If}\:\:{P}\:\left({A}\cup{B}\right)=\:\frac{\mathrm{3}}{\mathrm{4}},\:{P}\left(\bar {{A}}\right)=\frac{\mathrm{2}}{\mathrm{3}},\:\mathrm{then}\:{P}\:\left(\bar {{A}}\cap{B}\right)= \\ $$

Question Number 48735    Answers: 1   Comments: 0

The roots of the equation 2^(x+2) ∙ 3^((3x)/(x−1)) = 9 are given by

$$\mathrm{The}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\mathrm{2}^{{x}+\mathrm{2}} \centerdot\:\mathrm{3}^{\frac{\mathrm{3}{x}}{{x}−\mathrm{1}}} =\:\mathrm{9}\:\mathrm{are}\:\mathrm{given}\:\mathrm{by} \\ $$

Question Number 48729    Answers: 1   Comments: 0

Question Number 48725    Answers: 1   Comments: 3

∫ ∫ (√(x^2 + y^2 )) dx dy, (√(3y)) ≤ x ≤ (√(4 − y^2 )) , 0 ≤ y ≤ 2

$$\int\:\int\:\:\sqrt{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} }\:\:\:\mathrm{dx}\:\mathrm{dy},\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sqrt{\mathrm{3y}}\:\:\:\leqslant\:\:\mathrm{x}\:\:\leqslant\:\:\sqrt{\mathrm{4}\:−\:\mathrm{y}^{\mathrm{2}} }\:\:,\:\:\:\:\:\:\:\:\:\mathrm{0}\:\leqslant\:\mathrm{y}\:\leqslant\:\mathrm{2} \\ $$

Question Number 48724    Answers: 1   Comments: 1

Hey, everyone! Could someone help in this question below? The vectors (1, 2, 5), (3, 2, 1) and (9, 2, −11) in R^3 generate the vector subspace to wich belongs the vector? a) (−20, −8, 12) b) (2, 10, 33) c) (9, 10, 18) d) (5, 2, −2) e) (31, 18, 0) Why are my posts never resolved?

$${Hey},\:{everyone}! \\ $$$${Could}\:\:{someone}\:{help}\:{in}\:{this}\:{question}\:{below}? \\ $$$${The}\:{vectors}\:\left(\mathrm{1},\:\mathrm{2},\:\mathrm{5}\right),\:\left(\mathrm{3},\:\mathrm{2},\:\mathrm{1}\right)\:{and}\:\left(\mathrm{9},\:\mathrm{2},\:−\mathrm{11}\right)\:{in}\:\mathbb{R}^{\mathrm{3}} \:{generate}\:{the}\:{vector}\:{subspace}\:{to}\:{wich}\:{belongs}\:{the}\:{vector}? \\ $$$$\left.{a}\right)\:\left(−\mathrm{20},\:−\mathrm{8},\:\mathrm{12}\right) \\ $$$$\left.{b}\right)\:\left(\mathrm{2},\:\mathrm{10},\:\mathrm{33}\right) \\ $$$$\left.{c}\right)\:\left(\mathrm{9},\:\mathrm{10},\:\mathrm{18}\right) \\ $$$$\left.{d}\right)\:\left(\mathrm{5},\:\mathrm{2},\:−\mathrm{2}\right) \\ $$$$\left.{e}\right)\:\left(\mathrm{31},\:\mathrm{18},\:\mathrm{0}\right) \\ $$$${Why}\:{are}\:{my}\:{posts}\:{never}\:{resolved}? \\ $$$$ \\ $$$$ \\ $$

Question Number 48720    Answers: 0   Comments: 2

calculate ∫_0 ^∞ ((x^2 −2cosx+1)/(x^4 +x^2 +1))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}^{\mathrm{2}} \:−\mathrm{2}{cosx}+\mathrm{1}}{{x}^{\mathrm{4}} \:+{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$

Question Number 48719    Answers: 1   Comments: 1

find ∫ ((x−2)/(√(x^2 +4x−3)))dx

$${find}\:\:\int\:\:\:\:\frac{{x}−\mathrm{2}}{\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{3}}}{dx} \\ $$

Question Number 48718    Answers: 1   Comments: 2

let I_n =∫_0 ^1 (1−t^2 )^n dt 1) calculate I_n by recurrence 2)find the value of Σ_(k=0) ^n (((−1)^k )/(2k+1))C_n ^k

$${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} {dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}_{{n}} \:{by}\:{recurrence} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}}{C}_{{n}} ^{{k}} \\ $$

Question Number 48717    Answers: 0   Comments: 1

let f(x)=∫_0 ^(π/4) ln(1+xtant)dt 1) find f(x) at a simple form 2)calculate ∫_0 ^(π/4) ln(1+2tan(t))dt

$${let}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+{xtant}\right){dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{f}\left({x}\right)\:{at}\:{a}\:{simple}\:{form} \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+\mathrm{2}{tan}\left({t}\right)\right){dt} \\ $$

Question Number 48715    Answers: 0   Comments: 4

1) find f(λ) =∫_0 ^1 (dx/(2+e^(−λx) )) with λ>0 2)calculate ∫_0 ^1 (x/((2+e^(−λx) )^2 ))dx 3) find the value of ∫_0 ^1 (dx/(2 +e^(−x(√3)) ))dx and ∫_0 ^1 (x/((2+e^(−x(√3)) )^2 ))dx

$$\left.\mathrm{1}\right)\:{find}\:\:{f}\left(\lambda\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{\mathrm{2}+{e}^{−\lambda{x}} }\:\:{with}\:\lambda>\mathrm{0} \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{x}}{\left(\mathrm{2}+{e}^{−\lambda{x}} \right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\mathrm{2}\:+{e}^{−{x}\sqrt{\mathrm{3}}} }{dx}\:{and}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}}{\left(\mathrm{2}+{e}^{−{x}\sqrt{\mathrm{3}}} \right)^{\mathrm{2}} }{dx} \\ $$

Question Number 48711    Answers: 1   Comments: 1

Question Number 48703    Answers: 1   Comments: 0

Question Number 48687    Answers: 0   Comments: 0

f(x)=sin (x) f(x)+f′((1/x))=(1/2)(√2) find x?

$${f}\left({x}\right)=\mathrm{sin}\:\left({x}\right) \\ $$$${f}\left({x}\right)+{f}'\left(\frac{\mathrm{1}}{{x}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}} \\ $$$$\mathrm{find}\:{x}? \\ $$

Question Number 48705    Answers: 3   Comments: 2

Q.1→ Coefficient of a^8 b^4 c^9 d^9 in expansion of (abc+abd+acd+bcd)^(10) =? Q.2→ Coefficient of (1/x) in expansion of (1+x)^n (1+(1/x))^n =? Q.3→ If x^m occurs in expansion of (x+(1/x^2 ))^(2n) , then its coefficient=?

$${Q}.\mathrm{1}\rightarrow \\ $$$${Coefficient}\:{of}\:{a}^{\mathrm{8}} {b}^{\mathrm{4}} {c}^{\mathrm{9}} {d}^{\mathrm{9}} \:{in}\:{expansion} \\ $$$${of}\:\left({abc}+{abd}+{acd}+{bcd}\right)^{\mathrm{10}} \:=? \\ $$$$ \\ $$$${Q}.\mathrm{2}\rightarrow \\ $$$${Coefficient}\:{of}\:\frac{\mathrm{1}}{{x}}\:{in}\:{expansion}\:{of} \\ $$$$\left(\mathrm{1}+{x}\right)^{{n}} \left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{n}} =? \\ $$$$ \\ $$$${Q}.\mathrm{3}\rightarrow \\ $$$${If}\:{x}^{{m}} \:{occurs}\:{in}\:{expansion}\:{of}\: \\ $$$$\left({x}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{\mathrm{2}{n}} ,\:{then}\:{its}\:{coefficient}=? \\ $$

  Pg 1586      Pg 1587      Pg 1588      Pg 1589      Pg 1590      Pg 1591      Pg 1592      Pg 1593      Pg 1594      Pg 1595   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com