Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1591
Question Number 47515 Answers: 1 Comments: 1
Question Number 47513 Answers: 1 Comments: 1
Question Number 47510 Answers: 0 Comments: 1
$${the}\:{curve}\:{y}\:=\:\mathrm{3}{x}^{\mathrm{2}} \:+\mathrm{4}\:\left({x}=\mathrm{2}\:{and}\:{x}=\mathrm{3}\right)\:{is}\:{rotated}\:{about}\:{the}\: \\ $$$${x}.{axis}.{find}\:{the}\:{volume}\:{of}\:{the}\:{solid}\:{generated}.{Leave}\:{your} \\ $$$${answer}\:{in}\:{terms}\:{of}\:\pi. \\ $$
Question Number 47508 Answers: 0 Comments: 1
Question Number 47500 Answers: 0 Comments: 0
Question Number 47497 Answers: 1 Comments: 1
Question Number 47481 Answers: 1 Comments: 0
$$\mathrm{Three}\:\mathrm{six}−\mathrm{faced}\:\mathrm{dice}\:\mathrm{are}\:\mathrm{thrown} \\ $$$$\mathrm{together}.\:\mathrm{The}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{numbers}\:\mathrm{appearing}\:\mathrm{on}\:\mathrm{the}\:\mathrm{dice} \\ $$$$\mathrm{is}\:\:{k}\:\left(\mathrm{3}\leqslant\:{k}\:\leqslant\:\mathrm{8}\right)\:\mathrm{is} \\ $$
Question Number 47480 Answers: 1 Comments: 0
Question Number 47477 Answers: 1 Comments: 0
$${Let}\:\:{n}\:\:\in\:\:\mathbb{Z}^{+} \\ $$$${f}\left(\mathrm{1}\right)\:\:=\:\:\mathrm{1} \\ $$$${f}\left(\mathrm{2}{n}\right)\:\:=\:\:{f}\left({n}\right) \\ $$$${f}\left(\mathrm{2}{n}+\mathrm{1}\right)\:\:=\:\:\left({f}\left({n}\right)\right)^{\mathrm{2}} \:−\:\mathrm{2} \\ $$$${f}\left(\mathrm{1}\right)\:+\:{f}\left(\mathrm{2}\right)\:+\:{f}\left(\mathrm{3}\right)\:+\:\ldots+\:{f}\left(\mathrm{100}\right)\:\:=\:\:... \\ $$
Question Number 47476 Answers: 2 Comments: 1
$$\mathrm{How}\:\mathrm{may}\:\mathrm{I}\:\mathrm{prove}\:\mathrm{the}\:\mathrm{following}\:\mathrm{theorem}\:? \\ $$$$ \\ $$$$\:\:\:\frac{\boldsymbol{{a}}\:+\:\boldsymbol{{b}}}{\mathrm{2}}\:\:\:\geqslant\:\:\sqrt{\:\boldsymbol{{ab}}\:\:} \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you} \\ $$
Question Number 47471 Answers: 1 Comments: 2
Question Number 47467 Answers: 0 Comments: 1
Question Number 47457 Answers: 1 Comments: 0
$${A}\:{straight}\:{line}\:{through}\:\left(\mathrm{2},\mathrm{2}\right)\:{intersects} \\ $$$${lines}\:\sqrt{\mathrm{3}}{x}+{y}=\mathrm{0}\:{and}\:\sqrt{\mathrm{3}}{x}−{y}=\mathrm{0}\:{at}\:{pts}. \\ $$$${A}\:\&\:{B}\:{respectively}.\:{Find}\:{equation} \\ $$$${of}\:{line}\:{AB}\:{so}\:{that}\:\Delta{OAB}\:{is}\:{equilateral}? \\ $$
Question Number 47455 Answers: 0 Comments: 1
Question Number 47454 Answers: 1 Comments: 0
$$\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{locus} \\ $$$$\mathrm{of}\:\mathrm{middle}\:\mathrm{point}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{normal}\:\mathrm{chord}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{parabola}\:\mathrm{y}^{\mathrm{2}} =\mathrm{4ax}\:\mathrm{is} \\ $$$$\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{2a}}+\frac{\mathrm{4a}^{\mathrm{3}} }{\mathrm{y}^{\mathrm{2}} }=\mathrm{x}−\mathrm{2a} \\ $$
Question Number 47449 Answers: 1 Comments: 1
Question Number 47447 Answers: 1 Comments: 0
Question Number 47438 Answers: 2 Comments: 0
$${Find}\:{locus}\:{of}\:{a}\:{point}\:{P}\:{which}\:{moves} \\ $$$${such}\:{that}\:{its}\:{distance}\:{from}\:{the}\:{line} \\ $$$${y}=\sqrt{\mathrm{3}}{x}−\mathrm{7}\:{is}\:{same}\:{as}\:{its}\:{distance}\:{from} \\ $$$$\left(\mathrm{2}\sqrt{\mathrm{3}},−\mathrm{1}\right)\:? \\ $$
Question Number 47433 Answers: 1 Comments: 6
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{square}\:\mathrm{root}\:\mathrm{of}\:\:−\:\mathrm{5}\:−\:\mathrm{12i},\:\:\mathrm{hence}\:\mathrm{solve}:\:\:\mathrm{z}^{\mathrm{2}} \:−\:\left(\mathrm{4}\:+\:\mathrm{i}\right)\mathrm{z}\:+\:\left(\mathrm{5}\:+\:\mathrm{6i}\right)\:=\:\mathrm{0} \\ $$
Question Number 47432 Answers: 0 Comments: 1
$$ \\ $$$${what}\:{is}\:{the}\:{nth}\:{derivative}\:{of} \\ $$$${e}^{{ax}} \mathrm{sin}\:\left({bx}+{c}\right)? \\ $$
Question Number 47425 Answers: 1 Comments: 1
Question Number 47422 Answers: 1 Comments: 1
Question Number 47413 Answers: 1 Comments: 0
$$\mathrm{Calculate}:\:\:\mathrm{1999}^{\mathrm{2}} \:−\:\mathrm{1998}^{\mathrm{2}} \:+\:\mathrm{1997}^{\mathrm{2}} \:−\:\mathrm{1996}^{\mathrm{2}} \:...\:−\:\mathrm{2}^{\mathrm{2}} \:+\:\mathrm{1}^{\mathrm{2}} \\ $$
Question Number 47407 Answers: 1 Comments: 0
Question Number 47402 Answers: 2 Comments: 2
Question Number 47401 Answers: 2 Comments: 1
Pg 1586 Pg 1587 Pg 1588 Pg 1589 Pg 1590 Pg 1591 Pg 1592 Pg 1593 Pg 1594 Pg 1595
Terms of Service
Privacy Policy
Contact: info@tinkutara.com