Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1591

Question Number 50220    Answers: 0   Comments: 4

Question Number 50219    Answers: 7   Comments: 0

Question Number 50423    Answers: 1   Comments: 1

find f(a) =∫_a ^(+∞) (dx/((1+x^2 )(√(x^2 −a^2 )))) with a>0

$${find}\:{f}\left({a}\right)\:=\int_{{a}} ^{+\infty} \:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }}\:\:{with}\:{a}>\mathrm{0} \\ $$

Question Number 50209    Answers: 1   Comments: 0

The gcf and lcm of three numbers are 2 and 1200 respectively. if the two numbers are 16 and 24, find the third number

$$\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{gcf}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{lcm}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{three}}\:\boldsymbol{\mathrm{numbers}} \\ $$$$\boldsymbol{\mathrm{are}}\:\mathrm{2}\:\boldsymbol{\mathrm{and}}\:\mathrm{1200}\:\boldsymbol{\mathrm{respectively}}. \\ $$$$\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{two}}\:\boldsymbol{\mathrm{numbers}}\:\boldsymbol{\mathrm{are}}\:\mathrm{16}\:\boldsymbol{\mathrm{and}}\:\mathrm{24}, \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{third}}\:\boldsymbol{\mathrm{number}} \\ $$

Question Number 50201    Answers: 0   Comments: 2

a=665,21 b=47,14

$$\mathrm{a}=\mathrm{665},\mathrm{21}\:\:\:\:\:\:\:\mathrm{b}=\mathrm{47},\mathrm{14} \\ $$

Question Number 50198    Answers: 0   Comments: 1

Question Number 50197    Answers: 0   Comments: 0

plz plz help me sir

$$\mathrm{plz}\:\mathrm{plz}\:\mathrm{help}\:\mathrm{me}\:\mathrm{sir} \\ $$

Question Number 50196    Answers: 0   Comments: 0

Question Number 50195    Answers: 0   Comments: 0

Question Number 50194    Answers: 0   Comments: 2

Question Number 50349    Answers: 0   Comments: 0

Question Number 50200    Answers: 0   Comments: 2

Question Number 50239    Answers: 1   Comments: 1

Question Number 50186    Answers: 1   Comments: 0

Let f(x)= ∫_2 ^( x) (dt/(1+t^6 )). Prove that : (1/(730))<f(3)<(1/(65)).

$${Let}\:{f}\left({x}\right)=\:\int_{\mathrm{2}} ^{\:{x}} \:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{6}} }. \\ $$$${Prove}\:{that}\:\::\:\frac{\mathrm{1}}{\mathrm{730}}<{f}\left(\mathrm{3}\right)<\frac{\mathrm{1}}{\mathrm{65}}. \\ $$

Question Number 50175    Answers: 1   Comments: 0

Question Number 50171    Answers: 0   Comments: 3

Sir l′m sorry l dont understand you

$$\mathrm{Sir}\:\mathrm{l}'\mathrm{m}\:\mathrm{sorry}\:\mathrm{l}\:\mathrm{dont}\:\mathrm{understand}\: \\ $$$$\mathrm{you} \\ $$

Question Number 50163    Answers: 2   Comments: 0

Question Number 50161    Answers: 1   Comments: 0

Find the function whose first derivative is 8−(5/(x^2 )^(1/3) ) the initial conditions f(8)=−20

$${Find}\:{the}\:{function}\:{whose}\:{first}\: \\ $$$${derivative}\:{is}\:\mathrm{8}−\frac{\mathrm{5}}{\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }}\:{the}\:{initial}\: \\ $$$${conditions}\:{f}\left(\mathrm{8}\right)=−\mathrm{20} \\ $$

Question Number 50158    Answers: 7   Comments: 1

Question Number 50156    Answers: 0   Comments: 1

Question Number 50155    Answers: 0   Comments: 1

plz help me sir

$$\mathrm{plz}\:\mathrm{help}\:\mathrm{me}\:\mathrm{sir} \\ $$

Question Number 50140    Answers: 5   Comments: 0

Solve the differential equation a)x(x+y)(dy/dx)=x^2 +xy−3y^2 b)y+xy^2 −x(dy/dx)=0 c [ x^2 (d^2 y/dx^(2 ) )−2x(dy/dx)+2(2x^2 +1)y=24x^3 given that (dy/dx)=6 ,(d^2 y/dx^2 )=0

$${Solve}\:{the}\:{differential} \\ $$$${equation} \\ $$$$\left.{a}\right){x}\left({x}+{y}\right)\frac{{dy}}{{dx}}={x}^{\mathrm{2}} +{xy}−\mathrm{3}{y}^{\mathrm{2}} \\ $$$$\left.{b}\right){y}+{xy}^{\mathrm{2}} −{x}\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$${c}\:\left[\:\:{x}^{\mathrm{2}} \frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}\:} }−\mathrm{2}{x}\frac{{dy}}{{dx}}+\mathrm{2}\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right){y}=\mathrm{24}{x}^{\mathrm{3}} \right. \\ $$$${given}\:{that}\:\frac{{dy}}{{dx}}=\mathrm{6}\:\:\:,\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{0} \\ $$

Question Number 50138    Answers: 0   Comments: 1

D

$$\mathrm{D} \\ $$

Question Number 50135    Answers: 2   Comments: 2

Question Number 50132    Answers: 0   Comments: 1

Let f be a positive function. Let I_1 =∫_(1−k) ^k x f{x(1−x} dx, I_2 =∫_(1−k) ^k x f{x(1−x} dx, where 2k−1>0. Then (I_1 /I_2 ) is

$$\mathrm{Let}\:{f}\:\:\mathrm{be}\:\mathrm{a}\:\mathrm{positive}\:\mathrm{function}.\:\mathrm{Let} \\ $$$${I}_{\mathrm{1}} =\underset{\mathrm{1}−{k}} {\overset{{k}} {\int}}{x}\:{f}\left\{{x}\left(\mathrm{1}−{x}\right\}\:{dx},\:\right. \\ $$$${I}_{\mathrm{2}} =\underset{\mathrm{1}−{k}} {\overset{{k}} {\int}}{x}\:{f}\left\{{x}\left(\mathrm{1}−{x}\right\}\:{dx},\:\right. \\ $$$$\mathrm{where}\:\mathrm{2}{k}−\mathrm{1}>\mathrm{0}.\:\mathrm{Then}\:\frac{{I}_{\mathrm{1}} }{{I}_{\mathrm{2}} }\:\:\mathrm{is} \\ $$

Question Number 50126    Answers: 0   Comments: 0

  Pg 1586      Pg 1587      Pg 1588      Pg 1589      Pg 1590      Pg 1591      Pg 1592      Pg 1593      Pg 1594      Pg 1595   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com