Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 159
Question Number 199218 Answers: 0 Comments: 0
$$\mathrm{in}\:\mathrm{a}\:\mathrm{triangle}\: \\ $$$$\mathrm{nmmm5gfkl} \\ $$$$\: \\ $$$$ \\ $$$$ \\ $$
Question Number 199194 Answers: 1 Comments: 0
$$\mathrm{a}_{\mathrm{1}} ,\mathrm{a}_{\mathrm{2}} ,... \\ $$$$\mathrm{a}_{\mathrm{1}} =\mathrm{1} \\ $$$$\mathrm{a}_{\mathrm{2n}} =\mathrm{n}\centerdot\mathrm{a}_{\mathrm{n}} \\ $$$$\mathrm{a}_{\mathrm{2}^{\mathrm{100}} } \:=\:? \\ $$
Question Number 199184 Answers: 0 Comments: 3
Question Number 199183 Answers: 1 Comments: 0
$$\mathrm{B},\mathrm{O},\mathrm{M}\:-\:\mathrm{Each}\:\mathrm{is}\:\mathrm{a}\:\mathrm{distinct}\:\mathrm{positive} \\ $$$$\mathrm{integer} \\ $$$$\mathrm{If}\:\:\:\mathrm{B}\:\centerdot\:\mathrm{O}\:\centerdot\:\mathrm{M}\:=\:\mathrm{223} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{max}\left(\mathrm{B}\:+\:\mathrm{O}\:+\:\mathrm{M}\right)=? \\ $$
Question Number 199181 Answers: 0 Comments: 1
Question Number 199177 Answers: 1 Comments: 1
Question Number 199176 Answers: 1 Comments: 0
$$\:\:\:\mathrm{If}\:\mathrm{f}\left(\mathrm{x}\right)\:=\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4x}\right)\:\mathrm{sin}\:\mathrm{4x}\: \\ $$$$\:\:\:\mathrm{find}\:\mathrm{f}^{\left(\mathrm{6}\right)} \left(\mathrm{x}\right).\: \\ $$
Question Number 199175 Answers: 1 Comments: 0
Question Number 199174 Answers: 1 Comments: 0
Question Number 199170 Answers: 2 Comments: 9
$${n}^{\mathrm{4}} +\mathrm{2}{n}^{\mathrm{3}} +\mathrm{2}{n}^{\mathrm{2}} +{n}+\mathrm{7}\:=\:{a}^{\mathrm{2}} \:\left({a}\in{N}\right) \\ $$$$\rightarrow{n}=¿\:\left({n}\in{N}\right) \\ $$
Question Number 199167 Answers: 0 Comments: 0
$${Give}\:{a}\:{function}\: \\ $$$${f}:\:{R}\rightarrow\left(\mathrm{0};+\infty\right)\:{continous}\:{on}\:{R}\:{and}\:{such}\:{that} \\ $$$${f}\left({x}+{y}\right)\:=\:{f}\left({x}\right).{f}\left({y}\right) \\ $$$${a}.\:{Prove}\:{f}\left(\mathrm{0}\right)\:=\:\mathrm{1} \\ $$$${b}.\:{Let}\:{h}\left({x}\right)\:=\:{ln}\left[{f}\left({x}\right)\right].\:{Prove}\:{that}: \\ $$$$\:{h}\left({x}+{y}\right)\:=\:{h}\left({x}\right)\:+\:{h}\left({y}\right) \\ $$$${c}.\:{Find}\:{all}\:{the}\:{function}\:{f}\:{such}\:{that}\:{problem}\:{request} \\ $$$$\:\:\: \\ $$$$\: \\ $$
Question Number 199187 Answers: 0 Comments: 1
$$\mathrm{x}\:\mathrm{is}\:\mathrm{a}\:\mathrm{negative}\:\mathrm{real}\:\mathrm{number}: \\ $$$$\mathrm{If}\:\:\mid\mathrm{x}−\mathrm{2}\mid=\mathrm{p} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{x}−\mathrm{p}=? \\ $$
Question Number 199165 Answers: 1 Comments: 0
Question Number 199164 Answers: 0 Comments: 0
Question Number 199162 Answers: 0 Comments: 0
$${x}=−\mathrm{2}\sqrt{\mathrm{3}}\int{y}^{\mathrm{3}} \sqrt{\mathrm{1}+\frac{\mathrm{1}}{{y}}}\:{dy} \\ $$$${Find}\:\:\int{x}\left({y}\right){dy}\:\:\:. \\ $$
Question Number 199159 Answers: 1 Comments: 0
$$\:\sqrt[{\mathrm{4}}]{\mathrm{8}\left(\mathrm{x}+\mathrm{1}\right)}\:+\sqrt[{\mathrm{4}}]{\frac{\mathrm{x}+\mathrm{1}}{\mathrm{x}−\mathrm{1}}}\:=\sqrt[{\mathrm{4}}]{\mathrm{5}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\mathrm{3}}\: \\ $$$$\:\mathrm{x}=? \\ $$
Question Number 199355 Answers: 1 Comments: 0
Question Number 199358 Answers: 3 Comments: 1
Question Number 199362 Answers: 0 Comments: 0
Question Number 199155 Answers: 0 Comments: 1
$$\:\underbrace{ } \\ $$
Question Number 199135 Answers: 7 Comments: 0
$$\mathrm{a}\:+\:\frac{\mathrm{1}}{\mathrm{a}}\:=\:\mathrm{3} \\ $$$$\mathrm{find}:\:\:\:\mathrm{a}^{\mathrm{5}} \:+\:\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{5}} }\:\:=\:\:? \\ $$
Question Number 199133 Answers: 1 Comments: 0
$$\mathrm{a}^{\mathrm{2}} \mathrm{b}\:−\:\mathrm{1}\:=\:\mathrm{1999} \\ $$$$\mathrm{how}\:\mathrm{many}\:\mathrm{natural}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\left(\mathrm{a},\mathrm{b}\right)\:\mathrm{have}? \\ $$
Question Number 199149 Answers: 3 Comments: 1
Question Number 199353 Answers: 0 Comments: 4
$${What}\:{is}\:{the}\:{probability}\:{that}\:{in}\:{a}\:{class}\: \\ $$$${of}\:\mathrm{18}\:{people},\:{there}\:{exists}\:{exactly}\:{a}\: \\ $$$${group}\:{of}\:{exactly}\:\mathrm{3}\:{people}\:{born}\:{on}\:{the} \\ $$$${same}\:{day}\:{of}\:{the}\:{week}? \\ $$
Question Number 199351 Answers: 1 Comments: 0
Question Number 199112 Answers: 2 Comments: 0
$$\begin{cases}{\mathrm{a}^{\mathrm{2}} \:−\:\mathrm{b}\:=\:\mathrm{73}}\\{\mathrm{b}^{\mathrm{2}} \:−\:\mathrm{a}\:=\:\mathrm{73}}\end{cases}\:\:\:\:\:\mathrm{find}:\:\mathrm{a},\mathrm{b}\:=\:? \\ $$
Pg 154 Pg 155 Pg 156 Pg 157 Pg 158 Pg 159 Pg 160 Pg 161 Pg 162 Pg 163
Terms of Service
Privacy Policy
Contact: info@tinkutara.com