Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 159

Question Number 203565    Answers: 1   Comments: 0

Solve the following equation simultaneously and find the stationary points: 2xy^2 c^2 − 4x^3 y^2 − 2xy^4 = 0 -----(1) 2x^2 yc^2 − 2x^4 y − 4x^2 y^3 = 0 -----(2) Please, I need a well detail calculation Thank you

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{following}\:\mathrm{equation}\:\mathrm{simultaneously} \\ $$$$\mathrm{and}\:\mathrm{find}\:\mathrm{the}\:\mathrm{stationary}\:\mathrm{points}: \\ $$$$\mathrm{2xy}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} \:−\:\mathrm{4x}^{\mathrm{3}} \mathrm{y}^{\mathrm{2}} \:−\:\mathrm{2xy}^{\mathrm{4}} \:=\:\mathrm{0}\:-----\left(\mathrm{1}\right) \\ $$$$\mathrm{2x}^{\mathrm{2}} \mathrm{yc}^{\mathrm{2}} \:−\:\mathrm{2x}^{\mathrm{4}} \mathrm{y}\:−\:\mathrm{4x}^{\mathrm{2}} \mathrm{y}^{\mathrm{3}} \:=\:\mathrm{0}\:-----\left(\mathrm{2}\right) \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Please},\:\mathrm{I}\:\mathrm{need}\:\mathrm{a}\:\mathrm{well}\:\mathrm{detail}\:\mathrm{calculation} \\ $$$$\mathrm{Thank}\:\mathrm{you} \\ $$

Question Number 203564    Answers: 1   Comments: 0

∫_0 ^( ∞) ((sin^( 3) (x))/x^( 2) ) dx= ?

$$ \\ $$$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}^{\:\mathrm{3}} \left({x}\right)}{{x}^{\:\mathrm{2}} }\:{dx}=\:?\:\:\:\:\: \\ $$

Question Number 203560    Answers: 0   Comments: 1

Question Number 203561    Answers: 0   Comments: 1

(√(2x−5+3=?))

$$\sqrt{\mathrm{2}{x}−\mathrm{5}+\mathrm{3}=?} \\ $$

Question Number 203557    Answers: 1   Comments: 1

Question Number 203554    Answers: 0   Comments: 0

Question Number 203547    Answers: 0   Comments: 0

Question Number 203545    Answers: 1   Comments: 0

If A,B,C are finite sets whose elements are from the same universal set U and n(A) denotes the number of element in the set A (a) Show by means of venn diagram that n(A ∪ B) = n(A) + n(B) − n(A ∩ B) (b) Using the fact that (A ∪ B ∪ C) = (A∪B)∪C =A∪(B∪C) deduce an expression for (A∪B∪C) (c) If n(A∪B)= n(A∩B), what can be said about A and B? How did you reach your conclusion. Thank you in advance

$$\mathrm{If}\:\mathrm{A},\mathrm{B},\mathrm{C}\:\mathrm{are}\:\mathrm{finite}\:\mathrm{sets}\:\mathrm{whose}\:\mathrm{elements}\:\mathrm{are}\: \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{same}\:\mathrm{universal}\:\mathrm{set}\:\mathrm{U}\:\mathrm{and}\:\mathrm{n}\left(\mathrm{A}\right)\: \\ $$$$\mathrm{denotes}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{element}\:\mathrm{in}\:\mathrm{the}\:\mathrm{set}\:\mathrm{A} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Show}\:\mathrm{by}\:\mathrm{means}\:\mathrm{of}\:\mathrm{venn}\:\mathrm{diagram}\:\mathrm{that} \\ $$$$\mathrm{n}\left(\mathrm{A}\:\cup\:\mathrm{B}\right)\:=\:\mathrm{n}\left(\mathrm{A}\right)\:+\:\mathrm{n}\left(\mathrm{B}\right)\:−\:\mathrm{n}\left(\mathrm{A}\:\cap\:\mathrm{B}\right) \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Using}\:\mathrm{the}\:\mathrm{fact}\:\mathrm{that}\:\left(\mathrm{A}\:\cup\:\mathrm{B}\:\cup\:\mathrm{C}\right)\:=\:\left(\mathrm{A}\cup\mathrm{B}\right)\cup\mathrm{C} \\ $$$$=\mathrm{A}\cup\left(\mathrm{B}\cup\mathrm{C}\right)\:\mathrm{deduce}\:\mathrm{an}\:\mathrm{expression}\:\mathrm{for} \\ $$$$\left(\mathrm{A}\cup\mathrm{B}\cup\mathrm{C}\right) \\ $$$$\left(\mathrm{c}\right)\:\mathrm{If}\:\mathrm{n}\left(\mathrm{A}\cup\mathrm{B}\right)=\:\mathrm{n}\left(\mathrm{A}\cap\mathrm{B}\right),\:\:\mathrm{what}\:\mathrm{can}\:\mathrm{be}\:\mathrm{said} \\ $$$$\mathrm{about}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}?\:\mathrm{How}\:\mathrm{did}\:\mathrm{you}\:\mathrm{reach}\:\mathrm{your}\:\mathrm{conclusion}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{in}\:\mathrm{advance} \\ $$

Question Number 203544    Answers: 1   Comments: 0

∫_0 ^1_ (dx/((1−x^6 )^(1/6) )) =(π/3)

$$\int_{\mathrm{0}} ^{\mathrm{1}_{} } \frac{{dx}}{\left(\mathrm{1}−{x}^{\mathrm{6}} \right)^{\frac{\mathrm{1}}{\mathrm{6}}} }\:=\frac{\pi}{\mathrm{3}} \\ $$

Question Number 203533    Answers: 2   Comments: 0

Solve for x : 3^(x+2) =15^(x−1)

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\:: \\ $$$$\mathrm{3}^{\mathrm{x}+\mathrm{2}} =\mathrm{15}^{\mathrm{x}−\mathrm{1}} \\ $$

Question Number 203529    Answers: 0   Comments: 0

Question Number 203527    Answers: 2   Comments: 0

Find the maximum value of the function f(x,y)=x^2 y^2 z^2 subject to the condition that x^2 +y^2 +z^2 =c^2 , where c is the constant. Thank you in advance

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function} \\ $$$$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \mathrm{z}^{\mathrm{2}} \:\mathrm{subject}\:\mathrm{to}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{that} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{c}^{\mathrm{2}} ,\:\mathrm{where}\:\mathrm{c}\:\mathrm{is}\:\mathrm{the}\:\mathrm{constant}. \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{in}\:\mathrm{advance} \\ $$

Question Number 203526    Answers: 2   Comments: 0

Determine the maximum and minimum of the function: f(x,y)=x^4 +4x^2 y^2 −2x^2 +2y^2 −1 Thank you

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{and}\:\mathrm{minimum}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{function}: \\ $$$$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{x}^{\mathrm{4}} +\mathrm{4x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} −\mathrm{2x}^{\mathrm{2}} +\mathrm{2y}^{\mathrm{2}} −\mathrm{1} \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you} \\ $$

Question Number 203525    Answers: 1   Comments: 0

Solve: 4x^3 +8xy^2 −4x=0 -----(1) 8x^2 y−4y =0 -----(2) simultaneosly i.e find the stationary point Thank you

$$\mathrm{Solve}:\: \\ $$$$\mathrm{4x}^{\mathrm{3}} +\mathrm{8xy}^{\mathrm{2}} −\mathrm{4x}=\mathrm{0}\:-----\left(\mathrm{1}\right) \\ $$$$\mathrm{8x}^{\mathrm{2}} \mathrm{y}−\mathrm{4y}\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{0}\:-----\left(\mathrm{2}\right) \\ $$$$\mathrm{simultaneosly}\:\mathrm{i}.\mathrm{e}\:\mathrm{find}\:\mathrm{the}\:\mathrm{stationary}\:\mathrm{point} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you} \\ $$

Question Number 203509    Answers: 0   Comments: 0

Find the value of: Π_(n=1) ^∞ ((2^n +1)/(2^n −1))

$${Find}\:{the}\:{value}\:{of}: \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\frac{\mathrm{2}^{{n}} +\mathrm{1}}{\mathrm{2}^{{n}} −\mathrm{1}} \\ $$

Question Number 203508    Answers: 1   Comments: 0

Evaluate the given limit: lim_(n→∞) (((8)^(1/n) −1)/( ((16))^(1/n) −1))

$${Evaluate}\:{the}\:{given}\:{limit}: \\ $$$$\underset{{n}\rightarrow\infty} {{lim}}\frac{\sqrt[{{n}}]{\mathrm{8}}−\mathrm{1}}{\:\sqrt[{{n}}]{\mathrm{16}}−\mathrm{1}} \\ $$

Question Number 203502    Answers: 1   Comments: 2

ze^z =e Obviously z=1 Now find at least one solution for z∈C

$${z}\mathrm{e}^{{z}} =\mathrm{e} \\ $$$$\mathrm{Obviously}\:{z}=\mathrm{1} \\ $$$$\mathrm{Now}\:\mathrm{find}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{solution}\:\mathrm{for}\:{z}\in\mathbb{C} \\ $$

Question Number 203498    Answers: 0   Comments: 0

(d^(3 ) y/dx^3 )=4(x+(1/4))^2 −4y

$$\frac{{d}^{\mathrm{3}\:} {y}}{{dx}^{\mathrm{3}} }=\mathrm{4}\left({x}+\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} −\mathrm{4}{y} \\ $$

Question Number 203497    Answers: 0   Comments: 0

x^4 +cx+d=0 then find p from p^6 −4((d^( 3) /c^4 ))^(1/3) p^2 −1=0 x=(c^(1/3) /2)(p±(√(−p^2 −(8/p))) )

$${x}^{\mathrm{4}} +{cx}+{d}=\mathrm{0} \\ $$$${then}\:\:{find}\:{p}\:\:{from} \\ $$$${p}^{\mathrm{6}} −\mathrm{4}\left(\frac{{d}^{\:\mathrm{3}} }{{c}^{\mathrm{4}} }\right)^{\mathrm{1}/\mathrm{3}} {p}^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$${x}=\frac{{c}^{\mathrm{1}/\mathrm{3}} }{\mathrm{2}}\left({p}\pm\sqrt{−{p}^{\mathrm{2}} −\frac{\mathrm{8}}{{p}}}\:\right) \\ $$

Question Number 203490    Answers: 1   Comments: 0

1×3×5×7×9×...×2005 = ... (mod 1000)

$$\:\:\:\:\mathrm{1}×\mathrm{3}×\mathrm{5}×\mathrm{7}×\mathrm{9}×...×\mathrm{2005}\:=\:...\:\left(\mathrm{mod}\:\mathrm{1000}\right) \\ $$

Question Number 203480    Answers: 3   Comments: 2

Question Number 203471    Answers: 1   Comments: 0

Question Number 203428    Answers: 0   Comments: 0

$$\:\cancel{\underbrace{\:}} \\ $$

Question Number 203424    Answers: 3   Comments: 0

Question Number 203419    Answers: 0   Comments: 4

Question Number 203468    Answers: 0   Comments: 0

let A B and C be sets prove using venn diagrams and by first principle a)A×(B∪C)=(A×B)∪(A×C) b)A×(B∩C)=(A×B)∩(A×C) c)(A−B)∩(A∩B)∩(B−A)={}

$$\:\boldsymbol{\mathrm{let}}\:\boldsymbol{\mathrm{A}}\:{B}\:{and}\:{C}\:\:\boldsymbol{\mathrm{be}}\:\boldsymbol{\mathrm{sets}}\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{using}}\:\boldsymbol{\mathrm{venn}}\:\boldsymbol{\mathrm{diagrams}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{first}}\:\boldsymbol{\mathrm{principle}} \\ $$$$\left.\:\boldsymbol{\mathrm{a}}\right)\boldsymbol{\mathrm{A}}×\left(\boldsymbol{\mathrm{B}}\cup\boldsymbol{\mathrm{C}}\right)=\left(\boldsymbol{\mathrm{A}}×\boldsymbol{\mathrm{B}}\right)\cup\left(\boldsymbol{\mathrm{A}}×\boldsymbol{\mathrm{C}}\right) \\ $$$$\left.\boldsymbol{\mathrm{b}}\right)\mathrm{A}×\left(\boldsymbol{\mathrm{B}}\cap\boldsymbol{\mathrm{C}}\right)=\left(\boldsymbol{\mathrm{A}}×\boldsymbol{\mathrm{B}}\right)\cap\left(\boldsymbol{\mathrm{A}}×\boldsymbol{\mathrm{C}}\right) \\ $$$$\left.\boldsymbol{\mathrm{c}}\right)\left(\boldsymbol{\mathrm{A}}−\boldsymbol{\mathrm{B}}\right)\cap\left(\boldsymbol{{A}}\cap\boldsymbol{\mathrm{B}}\right)\cap\left(\boldsymbol{\mathrm{B}}−\boldsymbol{\mathrm{A}}\right)=\left\{\right\} \\ $$

  Pg 154      Pg 155      Pg 156      Pg 157      Pg 158      Pg 159      Pg 160      Pg 161      Pg 162      Pg 163   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com