Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 159
Question Number 195707 Answers: 1 Comments: 0
Question Number 195619 Answers: 2 Comments: 0
$$\:\:\:\cancel{\underline{\underbrace{ }}} \\ $$
Question Number 195618 Answers: 4 Comments: 0
$$\:\:\:\:\cancel{\underline{\underbrace{ }}} \\ $$
Question Number 195612 Answers: 1 Comments: 0
Question Number 195611 Answers: 1 Comments: 0
Question Number 195608 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\:{solve}\::\:\:\:\int_{\mathrm{0}} ^{\:\pi} \:\left(\mathrm{sin}\:{x}\right)^{\mathrm{cos}\:{x}} \:{dx} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 195606 Answers: 0 Comments: 1
Question Number 195602 Answers: 1 Comments: 0
$${solve}\:\int\:\frac{{dx}}{{sin}^{\mathrm{10}} \left({x}\right)+{cos}^{\mathrm{10}} \left({x}\right)} \\ $$
Question Number 195597 Answers: 0 Comments: 0
Question Number 195578 Answers: 2 Comments: 0
Question Number 195571 Answers: 2 Comments: 0
$${let}\:{f}\left({x}+{y}\right)+{f}\left({x}−{y}\right)=\mathrm{2}{f}\left({x}\right){f}\left({y}\right)\wedge{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=−\mathrm{1} \\ $$$${compute}\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\left[\frac{\mathrm{1}}{\mathrm{sin}\:\left({k}\right)\mathrm{sin}\:\left({k}+{f}\left({k}\right)\right)}\right] \\ $$
Question Number 195570 Answers: 1 Comments: 2
$$\mathrm{Given}\:\mathrm{three}\:\mathrm{Real}\:\mathrm{numbers}\:\left({x},{y},{z}\right),{such}\:{that} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{1} \\ $$$${maximize} \\ $$$${x}^{\mathrm{4}} +{y}^{\mathrm{4}} −\mathrm{2}{z}^{\mathrm{4}} −\mathrm{3}\sqrt{\mathrm{2}}{xyz} \\ $$
Question Number 195569 Answers: 0 Comments: 0
$${a}_{{i}} ,{b}_{{i}} ,{x}_{{i}} {be}\:{reals}\:{for}\:{i}=\mathrm{1},\mathrm{2},\mathrm{3},...,{n},\:{such}\:{that} \\ $$$$\sum_{{i}=\mathrm{1}} ^{{n}} \left[{a}_{{i}} {x}_{{i}} \right]=\mathrm{0}.\:{Prove}\:{that} \\ $$$$\left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[{x}_{{i}} ^{\mathrm{2}} \right]\right)\left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[{a}_{{i}} ^{\mathrm{2}} \right]\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[{b}_{{i}} ^{\mathrm{2}} \right]−\left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[{a}_{{i}} {b}_{{i}} \right]\right)^{\mathrm{2}} \right)\geqslant\left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[{a}_{{i}} ^{\mathrm{2}} \right]\right)\left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[{b}_{{i}} {x}_{{i}} \right]\right)^{\mathrm{2}} \\ $$
Question Number 195592 Answers: 0 Comments: 2
$${f}\left({x}\right)=\frac{\mathrm{1376}}{\left({x}−\mathrm{1}\right)^{{ln}\left(\frac{\mathrm{2}}{\mathrm{4689}}\right)} } \\ $$$${dom}\:{f}\left({x}\right)=? \\ $$$${answer}\:{this} \\ $$
Question Number 195590 Answers: 1 Comments: 0
Question Number 195564 Answers: 0 Comments: 0
Question Number 195560 Answers: 1 Comments: 1
$$ \\ $$
Question Number 195557 Answers: 1 Comments: 0
Question Number 195540 Answers: 1 Comments: 2
Question Number 195538 Answers: 1 Comments: 7
$${Number}\:{of}\:{distributions}\:{of} \\ $$$${n}\:{different}\:{articles}\:{to}\:{r}\:{different}\:\:{boxes} \\ $$$$\left.{so}\:{as}\:\mathrm{1}\right){empty}\:{box}\:{allowed} \\ $$$$\left.\mathrm{2}\right){empty}\:{box}\:{not}\:{allowed} \\ $$$${with}\:{proof}...{kindly}\:{help}\:{me} \\ $$
Question Number 195535 Answers: 1 Comments: 0
Question Number 199608 Answers: 2 Comments: 0
$$\left.\mathrm{1}\right)\:\:\:\mathrm{3}<\mid\mathrm{2}{x}−\mathrm{1}\mid<\mathrm{7}\:\:{find}\:\Sigma{x}\:\:\:\:;{x}\in{Z} \\ $$$$\left.\mathrm{2}\right)\:\:\:\mathrm{4}\leqslant\mid{x}−\mathrm{2}\mid<\mathrm{5}\:\:{find}\:\Sigma{x}\:\:\:\:;{x}\in{Z} \\ $$$$ \\ $$
Question Number 195532 Answers: 0 Comments: 1
$$\mathrm{2}^{\boldsymbol{\mathrm{x}}} −\mathrm{2}^{−\boldsymbol{\mathrm{x}}} =\mathrm{5}\:\boldsymbol{\mathrm{find}}\:\mathrm{4}^{\boldsymbol{\mathrm{x}}} +\mathrm{4}^{−\boldsymbol{\mathrm{x}}} =? \\ $$$$\boldsymbol{\mathrm{so}}\:\boldsymbol{\mathrm{soon}}\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{it}}\:\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{need}}\:\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{have}}\:\boldsymbol{\mathrm{rxame}}\:\boldsymbol{\mathrm{tomarrow}} \\ $$
Question Number 195521 Answers: 2 Comments: 0
$$\mathrm{2}^{\boldsymbol{\mathrm{a}}} =\mathrm{50}\:\:\:\:\boldsymbol{\mathrm{find}}\:\mathrm{2}^{\mathrm{2}\boldsymbol{\mathrm{a}}−\mathrm{2}} =? \\ $$$$\boldsymbol{\mathrm{soon}}\:\boldsymbol{\mathrm{as}}\:\boldsymbol{\mathrm{soon}}\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{need}}\:\boldsymbol{\mathrm{so}} \\ $$
Question Number 195520 Answers: 3 Comments: 0
$$\: \\ $$$$\:\:\:\:\:{find}\:{domine}\:{and}\:{range}\:{of}\:{function}\: \\ $$$$\:\:\:\:\:{f}\left({x},{y}\right)\:=\:\sqrt{\frac{{x}+{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{4}}} \\ $$$$ \\ $$$$ \\ $$
Question Number 195518 Answers: 1 Comments: 0
$${y}=\frac{{x}^{\mathrm{3}} −\mathrm{27}}{{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{9}} \\ $$$${y}=\frac{{sin}^{\mathrm{2}} {x}}{\mathrm{1}+{cosx}} \\ $$$${y}=\frac{{sinx}+{cosx}}{\:\sqrt{\mathrm{1}+{cos}\mathrm{2}{x}}} \\ $$
Pg 154 Pg 155 Pg 156 Pg 157 Pg 158 Pg 159 Pg 160 Pg 161 Pg 162 Pg 163
Terms of Service
Privacy Policy
Contact: info@tinkutara.com