Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1583
Question Number 50394 Answers: 0 Comments: 0
$$\left.{let}\:\:{x}\in\right]\mathrm{0},\mathrm{1}\left[\:\:{prove}\:{that}\:{the}\:{equation}\right. \\ $$$${tan}\left(\frac{\pi{x}}{\mathrm{2}}\right)=\frac{\pi}{\mathrm{2}{nx}}\:{have}\:{only}\:{one}\:{solution}\:{x}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{study}\:{tbe}\:{sequence}\:\left({x}_{{n}} \right)\:{and}\:{find}\:{a}\:{equivalent}\:{of}\:{x}_{{n}} \\ $$
Question Number 50392 Answers: 0 Comments: 0
$${let}\:{u}_{\mathrm{0}} =\mathrm{5}\:{and}\:\forall{n}\in{N}\:\:\:{u}_{{n}+\mathrm{1}} ={u}_{{n}} \:+\frac{\mathrm{1}}{{n}} \\ $$$${prove}\:{that}\:\mathrm{45}<{u}_{\mathrm{1000}} <\mathrm{45},\mathrm{1} \\ $$
Question Number 50391 Answers: 0 Comments: 0
$${let}\:{f}\left({t}\right)\:=\frac{{t}}{\sqrt{\mathrm{1}+{t}}} \\ $$$${study}\:{the}\:{sequence}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:{f}\left(\frac{{k}}{{n}^{\mathrm{2}} }\right). \\ $$
Question Number 50390 Answers: 0 Comments: 0
$${study}\:{the}\:{sequence}\:{u}_{\mathrm{1}} ={ln}\left(\mathrm{2}\right)\:{and} \\ $$$${u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} {ln}\left(\mathrm{2}−{u}_{{k}} \right)\:. \\ $$
Question Number 50388 Answers: 0 Comments: 0
$${find}\:{inf}_{\left({a},{b}\right)\in{R}^{\mathrm{2}} } \:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} \left({ln}\left({x}\right)−{ax}−{b}\right)^{\mathrm{2}} {dx} \\ $$
Question Number 50387 Answers: 0 Comments: 0
$${E}\:{is}\:{a}\:{euclidian}\:{space}\:{and}\:{f}\:\:{from}\:{E}\:{to}\:{E}\:{verify} \\ $$$$\forall\left({x},{y}\right)\:\in{E}^{\mathrm{2}} \:\:\:\:\left({x}\:\mid{f}\left({y}\right)\right)=\left({f}\left({x}\right)\mid{y}\right)\:{prove}\:{that}\:{f}\:{is}\:{linear}. \\ $$
Question Number 50386 Answers: 1 Comments: 0
$${let}\:{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\mathrm{0}\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:−\mathrm{2}\:\:−\mathrm{9}}\end{pmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\mathrm{4}\:\right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\left({A}−{I}\right)^{\mathrm{3}} \\ $$$$\left.\mathrm{2}\right)\:{conclude}\:\:{A}^{{n}} \:{for}\:{n}\:\:{integr}. \\ $$
Question Number 50385 Answers: 0 Comments: 1
$${p}\:{is}\:{a}\:{polynom}\:{having}\:{n}\:{roots}\:{simples}\:{with}\:{x}_{{i}} \neq\overset{−} {+}\mathrm{1} \\ $$$${caculate}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\mathrm{1}−{x}_{{i}} }\:\:{and}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\mathrm{1}−{x}_{{i}} ^{\mathrm{2}} } \\ $$$$ \\ $$
Question Number 50389 Answers: 0 Comments: 0
$${find}\:{the}\:{sequence}\:{u}_{{n}} \:\:{wich}\:{verify}\: \\ $$$${u}_{{n}+\mathrm{2}} \:+\mathrm{4}{u}_{{n}+\mathrm{1}} −\mathrm{4}{u}_{{n}} ={n} \\ $$
Question Number 50384 Answers: 1 Comments: 1
$${find}\:\int\:\:\:\frac{{dx}}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}−{x}^{\mathrm{3}} \right)} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{2}} ^{\sqrt{\mathrm{5}}} \:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}−{x}^{\mathrm{3}} \right)} \\ $$
Question Number 50383 Answers: 0 Comments: 0
$${let}\:{U}_{{n}} =\left\{\left({x},{y}\right)\in{N}^{\mathrm{2}} /\mathrm{2}{x}+\mathrm{3}{y}={n}\right\} \\ $$$${prove}\:{that}\:{U}_{{n}} ={U}_{{n}−\mathrm{2}} \:+{U}_{{n}−\mathrm{3}} −{U}_{{n}−\mathrm{5}} \\ $$$${for}\:{n}\geqslant\mathrm{5}\:. \\ $$
Question Number 50381 Answers: 0 Comments: 0
$${calculate}\:{S}_{{n}} =\sum_{{p}=\mathrm{1}} ^{{n}} \:\:\frac{{p}}{\mathrm{1}+{p}^{\mathrm{2}} \:+{p}^{\mathrm{4}} } \\ $$$${and}\:{determine}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \\ $$
Question Number 50380 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\:{decompose}\:{F}\left({x}\right)=\frac{\mathrm{1}}{\left({x}−{a}\right)^{{n}} \left({x}−{b}\right)^{{n}} } \\ $$$${witha}\neq{b} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{{C}_{{p}+{k}−\mathrm{1}} ^{{k}} }{\mathrm{2}^{{k}+{p}} }\: \\ $$$$+\:\sum_{{k}=\mathrm{0}} ^{{p}−\mathrm{1}} \:\:\:\frac{{C}_{{n}+{k}−\mathrm{1}} ^{{k}} }{\mathrm{2}^{{k}+{n}} } \\ $$
Question Number 50379 Answers: 0 Comments: 0
$${let}\:{U}_{{n}} =\left\{{z}\in{C}\:/{z}^{{n}} =\mathrm{1}\right\}\:\:{find}\:{two}\:{polynom}\:{A}\left({x}\right) \\ $$$${and}\:{B}\left({x}\right)\:{verify}\:\:\sum_{{w}\in{U}_{{n}} } \:\:\:\:\frac{{w}}{\left({x}−{w}\right)^{\mathrm{2}} }\:=\frac{{A}\left({x}\right)}{{B}\left({x}\right)} \\ $$
Question Number 50377 Answers: 0 Comments: 0
$${let}\:{p}\:{is}\:{a}\:{polynome}\:{with}\:{degp}={n}\geqslant\mathrm{2}\:{hsving}\:{n}\:{roots} \\ $$$${simples}\:{prove}\:{that}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{p}^{,} \left({x}_{{k}} \right)}\:=\mathrm{0} \\ $$
Question Number 50376 Answers: 0 Comments: 0
$${let}\:{p}\in\:{K}\left[{x}\right]\:{prove}\:{that}\:{p}−{x}\:{divide}\:{pop}\left({x}\right)−{x} \\ $$
Question Number 50375 Answers: 1 Comments: 0
$${let}\:{f}\left({x}\right)=\frac{\mathrm{1}}{{cosx}}\:{prove}\:{that}\:{f}^{\left.\right)\left.{n}\right)} \left({x}\right)=\frac{{p}_{{n}} \left({sinx}\right)}{{cos}^{{n}+\mathrm{1}} {x}} \\ $$$${with}\:{p}_{{n}} \:{is}\:{apolynom} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:{p}_{\mathrm{1}} ,{p}_{\mathrm{2}} \:{and}\:{p}_{\mathrm{3}} \\ $$$$\left.\mathrm{3}\right)\:{detdrmine}\:{p}_{{n}} \left(\mathrm{1}\right). \\ $$
Question Number 50374 Answers: 0 Comments: 0
$${determine}\:{all}\:{polynoms}\:{p}\:\in{R}\left[{x}\right]\:{wich}\:{verify} \\ $$$${p}\left({x}^{\mathrm{2}} \right)={p}\left({x}\right){p}\left({x}+\mathrm{1}\right) \\ $$
Question Number 50373 Answers: 0 Comments: 0
$${decompose}\:{in}\:{prime}\:{factors}\:{the}\:{polynom} \\ $$$${p}={x}^{\mathrm{2}{n}} −\mathrm{2}{cos}\alpha\:{x}^{{n}} \:+\mathrm{1} \\ $$
Question Number 50372 Answers: 0 Comments: 0
$${prove}\:{that}\:\mathrm{2}^{{n}+\mathrm{1}} \:{divide}\left[\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}{n}+\mathrm{1}} \right]\:{for}\:{all}\:{n} \\ $$$${integr}\:{natural}. \\ $$
Question Number 50371 Answers: 0 Comments: 0
$${let}\:{F}_{{n}} =\mathrm{2}^{\mathrm{2}^{{n}} } \:+\mathrm{1}\:\:\:\:\left({fermat}\:{numbers}\right) \\ $$$${prove}\:{that}\:\Delta\left({F}_{{m}} ,{F}_{{n}} \right)=\mathrm{1}\:{for}\:{m}\neq{n} \\ $$
Question Number 50370 Answers: 0 Comments: 0
$${prove}\:{that}\:\forall\:\left({x},{y}\right)\in{Z}^{\mathrm{2}} \\ $$$${x}^{\mathrm{19}} {y}−{xy}^{\mathrm{19}} \:{is}\:{divided}\:{by}\:\mathrm{798}. \\ $$
Question Number 50369 Answers: 1 Comments: 0
$${find}\:{x}\:,{y}\:{from}\:{Z}\:\:{wich}\:{verify} \\ $$$${y}^{\mathrm{2}} ={x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{7}\right)\left({x}+\mathrm{8}\right) \\ $$
Question Number 50368 Answers: 0 Comments: 1
$${find}\:{all}\:\left({x},{y}\right)\in{Q}^{+\bigstar^{\mathrm{2}} } \:\:{and}\:\:{x}^{{y}} ={y}^{{x}} \:\:{and}\:{x}<{y} \\ $$
Question Number 50367 Answers: 0 Comments: 0
$${calculate}\:\sum_{{k}={p}} ^{\mathrm{2}{p}} \:\:\frac{{C}_{{k}} ^{{p}} }{\mathrm{2}^{{k}} } \\ $$
Question Number 50366 Answers: 0 Comments: 0
$${let}\:\:{A}\:=\begin{pmatrix}{\mathrm{0}\:\:\:\:\:{m}\:\:\:\:\:\:{m}^{\mathrm{2}} }\\{\frac{\mathrm{1}}{{m}}\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:{m}}\end{pmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\frac{\mathrm{1}}{{m}^{\mathrm{2}} }\:\:\:\:\frac{\mathrm{1}}{{m}}\:\:\:\:\:\:\mathrm{0}\:\:\:\right) \\ $$$${A}\:\in\:{M}_{\mathrm{3}} \left({R}\right)\:\:{and}\:{m}\:{not}\:\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{relation}\:{betwen}\:{I}_{\mathrm{3}} ,\:{A}\:{and}\:{A}^{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\:{is}\:{A}\:{inversible}\:\:\:.{determine}\:{A}^{−\mathrm{1}} \:{in}\:{case}\:{of}\:{exist} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{propers}\:{values}\:{of}\:{A}. \\ $$
Pg 1578 Pg 1579 Pg 1580 Pg 1581 Pg 1582 Pg 1583 Pg 1584 Pg 1585 Pg 1586 Pg 1587
Terms of Service
Privacy Policy
Contact: info@tinkutara.com