let f(x)=∫_0 ^1 ((ln(1+xt^2 ))/(1+t^2 ))dt
1) find a xplicit form of f(x)
2) developp f at integr serie
3)find the value of ∫_0 ^1 ((ln(1+t^2 ))/(1+t^2 ))dt
4)find the value of ∫_0 ^1 ((ln(1+2t^2 ))/(1+t^2 ))dt
(at−h)^2 +((a/t)−k)^2 =R^( 2)
where a, h, k, R are constants.
Then find
s^2 =(t_1 −t_2 )^2 (1+(1/(t_1 ^2 t_2 ^2 )))
where t_1 , t_2 are roots of eq. at top.