Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1583

Question Number 50446    Answers: 0   Comments: 2

Question Number 50445    Answers: 1   Comments: 1

The roots of the fallowing functions are the Sequences of arithmetic progressiyon f(x)=x^5 −20x^4 +ax^3 +bx^2 +cx+24 f(8)=?

$$\boldsymbol{\mathrm{The}}\:\:\boldsymbol{\mathrm{roots}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{fallowing}} \\ $$$$\boldsymbol{\mathrm{functions}}\:\:\boldsymbol{\mathrm{are}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{Sequences}}\:\:\boldsymbol{\mathrm{of}} \\ $$$$\boldsymbol{\mathrm{arithmetic}}\:\:\boldsymbol{\mathrm{progressiyon}} \\ $$$$\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=\boldsymbol{\mathrm{x}}^{\mathrm{5}} −\mathrm{20}\boldsymbol{\mathrm{x}}^{\mathrm{4}} +\boldsymbol{\mathrm{ax}}^{\mathrm{3}} +\boldsymbol{\mathrm{bx}}^{\mathrm{2}} +\boldsymbol{\mathrm{cx}}+\mathrm{24} \\ $$$$\boldsymbol{\mathrm{f}}\left(\mathrm{8}\right)=? \\ $$

Question Number 50442    Answers: 1   Comments: 2

Question Number 50439    Answers: 0   Comments: 1

prof Abdo please limit the input of question... here it is flood...

$${prof}\:{Abdo}\:{please}\:{limit}\:{the}\:{input}\:{of}\:{question}... \\ $$$${here}\:{it}\:{is}\:{flood}... \\ $$

Question Number 50433    Answers: 0   Comments: 0

find all function f C^2 onR / f(x)+∫_0 ^x (x−t)f(t)dt =1 ∀ x∈R .

$${find}\:{all}\:{function}\:{f}\:\:{C}^{\mathrm{2}} \:{onR}\:/ \\ $$$${f}\left({x}\right)+\int_{\mathrm{0}} ^{{x}} \left({x}−{t}\right){f}\left({t}\right){dt}\:=\mathrm{1}\:\forall\:{x}\in{R}\:. \\ $$

Question Number 50432    Answers: 1   Comments: 1

solve x(x^2 −1)y^′ +2y =x^2

$${solve}\:{x}\left({x}^{\mathrm{2}} −\mathrm{1}\right){y}^{'} \:+\mathrm{2}{y}\:={x}^{\mathrm{2}} \\ $$

Question Number 50431    Answers: 1   Comments: 1

solve xy^′ +y =((2x)/(√(1−x^4 )))

$${solve}\:{xy}^{'} \:+{y}\:=\frac{\mathrm{2}{x}}{\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }} \\ $$

Question Number 50430    Answers: 0   Comments: 1

solve (x^2 +3)y^′ +(x^3 −1)y =x^2

$${solve}\:\left({x}^{\mathrm{2}} \:+\mathrm{3}\right){y}^{'} \:+\left({x}^{\mathrm{3}} −\mathrm{1}\right){y}\:={x}^{\mathrm{2}} \\ $$

Question Number 50429    Answers: 0   Comments: 2

solve y^(′′) +e^x^2 y =0

$${solve}\:{y}^{''} \:+{e}^{{x}^{\mathrm{2}} } {y}\:=\mathrm{0} \\ $$

Question Number 50428    Answers: 0   Comments: 0

solve y^′ +((2x+1)/(x(x^2 +1))) y = (1/(x−1))

$${solve}\:{y}^{'} \:+\frac{\mathrm{2}{x}+\mathrm{1}}{{x}\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)}\:{y}\:=\:\frac{\mathrm{1}}{{x}−\mathrm{1}} \\ $$

Question Number 50427    Answers: 0   Comments: 2

let I_n (λ) =∫_0 ^π ((vos(nt))/(1−2λcost +λ^2 ))dt 1)calculate I_0 (λ) and I_1 (λ) 2) find relation between I_(n−1) ,I_n and I_(n+1) 3) calculate I_n (λ).

$${let}\:{I}_{{n}} \left(\lambda\right)\:=\int_{\mathrm{0}} ^{\pi} \:\:\frac{{vos}\left({nt}\right)}{\mathrm{1}−\mathrm{2}\lambda{cost}\:+\lambda^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{1}\right){calculate}\:{I}_{\mathrm{0}} \left(\lambda\right)\:{and}\:{I}_{\mathrm{1}} \left(\lambda\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{relation}\:{between}\:{I}_{{n}−\mathrm{1}} ,{I}_{{n}} \:{and}\:{I}_{{n}+\mathrm{1}} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{I}_{{n}} \left(\lambda\right). \\ $$

Question Number 50426    Answers: 2   Comments: 0

study the convergence of U_n =((2/π) ∫_0 ^(π/2) (sinx)^(1/n) )^n

$${study}\:{the}\:{convergence}\:{of}\: \\ $$$${U}_{{n}} =\left(\frac{\mathrm{2}}{\pi}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sinx}\right)^{\frac{\mathrm{1}}{{n}}} \right)^{{n}} \\ $$

Question Number 50425    Answers: 0   Comments: 0

find ∫_0 ^∞ ((sin^4 (t))/t^3 ) dt

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{sin}^{\mathrm{4}} \left({t}\right)}{{t}^{\mathrm{3}} }\:{dt} \\ $$

Question Number 50424    Answers: 0   Comments: 0

convergence and calculate ∫_0 ^1 ((ln(t))/((1+t)(√(1−t^2 ))))dt

$${convergence}\:{and}\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dt} \\ $$

Question Number 50422    Answers: 1   Comments: 1

find ∫_0 ^1 ((ln(x))/((√x)(1−x)^(3/2) ))dx

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left({x}\right)}{\sqrt{{x}}\left(\mathrm{1}−{x}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{dx} \\ $$

Question Number 50421    Answers: 0   Comments: 1

calculate A =∫_0 ^(π/3) (du/((1+cos^2 u)^3 ))

$${calculate}\:{A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\:\frac{{du}}{\left(\mathrm{1}+{cos}^{\mathrm{2}} {u}\right)^{\mathrm{3}} } \\ $$

Question Number 50420    Answers: 1   Comments: 4

find ∫_0 ^(π/6) cosx ln(cosx)dx

$${find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} \:\:{cosx}\:{ln}\left({cosx}\right){dx} \\ $$

Question Number 50418    Answers: 0   Comments: 1

calculate ∫_0 ^(lln(3)) ((sh^2 (x)dx)/(ch^3 (x)))

$${calculate}\:\int_{\mathrm{0}} ^{{lln}\left(\mathrm{3}\right)} \:\:\frac{{sh}^{\mathrm{2}} \left({x}\right){dx}}{{ch}^{\mathrm{3}} \left({x}\right)} \\ $$

Question Number 50417    Answers: 0   Comments: 1

find ∫_0 ^1 arctan(√(1−(x^2 /2)))dx

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctan}\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}{dx} \\ $$

Question Number 50416    Answers: 1   Comments: 0

calculate ∫_0 ^1 ^3 (√(x^2 (1−x^3 )))dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:^{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{3}} \right)}{dx} \\ $$

Question Number 50415    Answers: 1   Comments: 1

calculate ∫_0 ^(π/2) (dt/(1+cosθ cost))

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dt}}{\mathrm{1}+{cos}\theta\:{cost}} \\ $$

Question Number 50414    Answers: 1   Comments: 0

calculate ∫_0 ^(π/2) ((x sinx cosx)/(tan^2 x +cotan^2 x))dx ctanx =(1/(tanx))

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{x}\:{sinx}\:{cosx}}{{tan}^{\mathrm{2}} {x}\:+{cotan}^{\mathrm{2}} {x}}{dx} \\ $$$${ctanx}\:=\frac{\mathrm{1}}{{tanx}} \\ $$

Question Number 50413    Answers: 0   Comments: 1

let f ∈C^0 (R,R) / ∀ x∈R f(a+b−x)=f(x) 1) find ∫_a ^b xf(x)dx interms of ∫_a ^b f(x)dx 2) calculate ∫_0 ^π ((xdx)/(1+sinx))

$${let}\:{f}\:\in{C}^{\mathrm{0}} \left({R},{R}\right)\:/\:\forall\:{x}\in{R}\:\:{f}\left({a}+{b}−{x}\right)={f}\left({x}\right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:\int_{{a}} ^{{b}} {xf}\left({x}\right){dx}\:{interms}\:{of}\:\int_{{a}} ^{{b}} {f}\left({x}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{xdx}}{\mathrm{1}+{sinx}} \\ $$

Question Number 50412    Answers: 0   Comments: 1

1) calculate U_n =∫_0 ^π (dx/(1+cos^2 (nx))) with n from N 2) f continue from [0,π] to R find lim_(n→+∞) ∫_0 ^π ((f(x))/(1+cos^2 (nx)))dx

$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{\mathrm{1}+{cos}^{\mathrm{2}} \left({nx}\right)}\:{with}\:{n}\:{from}\:{N} \\ $$$$\left.\mathrm{2}\right)\:{f}\:{continue}\:{from}\:\left[\mathrm{0},\pi\right]\:{to}\:{R}\:\:{find} \\ $$$${lim}_{{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{f}\left({x}\right)}{\mathrm{1}+{cos}^{\mathrm{2}} \left({nx}\right)}{dx} \\ $$

Question Number 50411    Answers: 0   Comments: 0

find all function f continues from R to R / ∀(x,h)∈R^2 f(x).f(y)=∫_(x−y) ^(x+y) f(t)dt .

$${find}\:{all}\:{function}\:{f}\:\:{continues}\:{from}\:{R}\:{to}\:{R}\:/ \\ $$$$\forall\left({x},{h}\right)\in{R}^{\mathrm{2}} \:\:\:{f}\left({x}\right).{f}\left({y}\right)=\int_{{x}−{y}} ^{{x}+{y}} \:{f}\left({t}\right){dt}\:. \\ $$

Question Number 50410    Answers: 0   Comments: 0

determine all functions f ∈C^0 (R,R) / ∫_0 ^x f(x)dx =(2/3)xf(x) .

$${determine}\:{all}\:{functions}\:{f}\:\in{C}^{\mathrm{0}} \left({R},{R}\right)\:/ \\ $$$$\int_{\mathrm{0}} ^{{x}} {f}\left({x}\right){dx}\:=\frac{\mathrm{2}}{\mathrm{3}}{xf}\left({x}\right)\:. \\ $$

  Pg 1578      Pg 1579      Pg 1580      Pg 1581      Pg 1582      Pg 1583      Pg 1584      Pg 1585      Pg 1586      Pg 1587   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com