let f:R→R be a continuous function then
show that
(1) if f(x) = f(x^2 ) ∀ x ∈R then f is a constant
function
(2) if f(x) = f(2x+1) ∀x∈R then f is a
constant function
find the transfer function of the state
model of the system given by
x^• = determinant (((0 1 1)),((0 0 1)),((−1 −2 −3)))x+ determinant (((0 0)),((1 0)),((0 1)))
and determinant ((y_1 ),(y_2 ))= determinant (((1 0 0)),((0 0 1)))x
Consider the relation R whose graph is giveny
b R(
(57)(58)(78)(97)(98)(55)(66)(56)(77)(88)99)o
n the set S 56789 Find 1. the set of alla
first(lest) elements of (SR) 2. the set of alla
lst element of (SR) 3. the set of all
minimalelements of (SR) 4. the set of alla
mximal elements of (SR