Suggested solution method to
question 203502
ze^z =1
Obviously the only real solution is
z=W(1)≈.567143290
z=a+bi∧b≠0
(a+bi)e^(a+bi) =1
(a+bi)(cos b +isin b)e^a =1
e^a (acos b −bsin b)+e^a (asin b +bcos b)i=1
{ ((e^a (acos b −bsin b)=1)),((e^a (asin b +bcos b)=0 ⇒ a=−bcot b)) :}
Inserting & transforming leaves us with:
{ ((be^(−bcot b) +sin b =0)),((a=−bcot b)) :}
We can only approximate.
The first solutions are:
b≈±4.37518515 ⇒ a≈−1.53391332
⇒ z≈−1.53391332±4.37518515i
b≈±10.7762995 ⇒ a≈−2.40158510
⇒ z≈−2.40158510±10.7762995i
These are the values of the complex
LambertW−function W_n (1); n∈Z
Following this path we can solve
ze^z =w with z, w∈Z
I hope this is helpful!
|