Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 158

Question Number 207341    Answers: 2   Comments: 0

Question Number 207339    Answers: 2   Comments: 0

lim_(x→∞) (((x+a)^(1/x) −x^(1/x) )/((x+b)^(1/x) −x^(1/x) )) =?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left({x}+{a}\right)^{\mathrm{1}/{x}} −{x}^{\mathrm{1}/{x}} }{\left({x}+{b}\right)^{\mathrm{1}/{x}} −{x}^{\mathrm{1}/{x}} }\:=? \\ $$

Question Number 207332    Answers: 1   Comments: 1

(a^→ ×b^→ )×(a^→ )=? how is the solution

$$\left(\overset{\rightarrow} {\mathrm{a}}×\overset{\rightarrow} {\mathrm{b}}\right)×\left(\overset{\rightarrow} {\mathrm{a}}\right)=? \\ $$$$\mathrm{how}\:\mathrm{is}\:\mathrm{the}\:\mathrm{solution} \\ $$

Question Number 207330    Answers: 1   Comments: 0

Find: 4 cos 50° + (1/(sin 20°)) = ?

$$\mathrm{Find}:\:\:\:\mathrm{4}\:\mathrm{cos}\:\mathrm{50}°\:\:+\:\:\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{20}°}\:\:=\:\:? \\ $$

Question Number 207328    Answers: 1   Comments: 0

Find: 4 sin 50° − (1/(cos 20°)) = ?

$$\mathrm{Find}:\:\:\:\mathrm{4}\:\mathrm{sin}\:\mathrm{50}°\:−\:\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{20}°}\:\:=\:\:? \\ $$

Question Number 207327    Answers: 1   Comments: 1

(x−3) (√(x^2 −x−2)) = 0 Find: x = ?

$$\left(\mathrm{x}−\mathrm{3}\right)\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}−\mathrm{2}}\:\:=\:\:\mathrm{0} \\ $$$$\mathrm{Find}:\:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$

Question Number 207408    Answers: 2   Comments: 0

z = ((√3)/2) − (1/2) i find: z^(11) = ?

$$\boldsymbol{\mathrm{z}}\:\:=\:\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:−\:\frac{\mathrm{1}}{\mathrm{2}}\:\boldsymbol{\mathrm{i}}\:\:\:\:\:\mathrm{find}:\:\:\boldsymbol{\mathrm{z}}^{\mathrm{11}} \:=\:? \\ $$

Question Number 207407    Answers: 0   Comments: 2

Question Number 207320    Answers: 1   Comments: 1

Question Number 207317    Answers: 2   Comments: 0

solve for y (1/(y′))+(1/(y′′))=1

$${solve}\:{for}\:{y} \\ $$$$\frac{\mathrm{1}}{{y}'}+\frac{\mathrm{1}}{{y}''}=\mathrm{1} \\ $$

Question Number 207315    Answers: 1   Comments: 0

if ab+ac+bc=2 calculate minimum of 10a^2 +10b^2 +c^2

$${if}\:{ab}+{ac}+{bc}=\mathrm{2}\: \\ $$$${calculate}\:{minimum}\:{of}\:\mathrm{10}{a}^{\mathrm{2}} +\mathrm{10}{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \\ $$

Question Number 207314    Answers: 1   Comments: 0

let f:R→R be a continuous function then show that (1) if f(x) = f(x^2 ) ∀ x ∈R then f is a constant function (2) if f(x) = f(2x+1) ∀x∈R then f is a constant function

$$\:\mathrm{let}\:\mathrm{f}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{be}\:\mathrm{a}\:\mathrm{continuous}\:\mathrm{function}\:\mathrm{then} \\ $$$$\:\mathrm{show}\:\mathrm{that} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{if}\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{f}\left(\mathrm{x}^{\mathrm{2}} \right)\:\forall\:\mathrm{x}\:\in\mathbb{R}\:\mathrm{then}\:\mathrm{f}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{constant} \\ $$$$\:\:\mathrm{function} \\ $$$$\:\left(\mathrm{2}\right)\:\mathrm{if}\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{f}\left(\mathrm{2x}+\mathrm{1}\right)\:\forall\mathrm{x}\in\mathbb{R}\:\mathrm{then}\:\mathrm{f}\:\:\mathrm{is}\:\mathrm{a}\: \\ $$$$\:\:\mathrm{constant}\:\mathrm{function}\: \\ $$

Question Number 207313    Answers: 0   Comments: 0

find the transfer function of the state model of the system given by x^• = determinant (((0 1 1)),((0 0 1)),((−1 −2 −3)))x+ determinant (((0 0)),((1 0)),((0 1))) and determinant ((y_1 ),(y_2 ))= determinant (((1 0 0)),((0 0 1)))x

$$\mathrm{find}\:\mathrm{the}\:\mathrm{transfer}\:\mathrm{function}\:\mathrm{of}\:\mathrm{the}\:\mathrm{state} \\ $$$$\mathrm{model}\:\mathrm{of}\:\mathrm{the}\:\mathrm{system}\:\mathrm{given}\:\mathrm{by} \\ $$$$\overset{\bullet} {\mathrm{x}}=\begin{vmatrix}{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{1}}\\{−\mathrm{1}\:\:−\mathrm{2}\:\:\:−\mathrm{3}}\end{vmatrix}\mathrm{x}+\begin{vmatrix}{\mathrm{0}\:\:\:\mathrm{0}}\\{\mathrm{1}\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\mathrm{1}}\end{vmatrix} \\ $$$$\mathrm{and}\:\begin{vmatrix}{\mathrm{y}_{\mathrm{1}} }\\{\mathrm{y}_{\mathrm{2}} }\end{vmatrix}=\begin{vmatrix}{\mathrm{1}\:\:\mathrm{0}\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\mathrm{0}\:\:\mathrm{1}}\end{vmatrix}\mathrm{x} \\ $$

Question Number 207312    Answers: 0   Comments: 0

obtain the state model of the system whose transfer function is given by ((Y(s))/(U(s)))=(s/(15s^3 +26s+36))

$$\mathrm{obtain}\:\mathrm{the}\:\mathrm{state}\:\mathrm{model}\:\mathrm{of}\:\mathrm{the}\:\mathrm{system} \\ $$$$\mathrm{whose}\:\mathrm{transfer}\:\mathrm{function}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by} \\ $$$$\frac{\mathrm{Y}\left(\mathrm{s}\right)}{\mathrm{U}\left(\mathrm{s}\right)}=\frac{\mathrm{s}}{\mathrm{15s}^{\mathrm{3}} +\mathrm{26s}+\mathrm{36}} \\ $$

Question Number 207292    Answers: 3   Comments: 1

Question Number 207287    Answers: 0   Comments: 3

Question Number 207279    Answers: 0   Comments: 1

If z = i − 1 Find z^(−100) = ?

$$\mathrm{If}\:\:\:\mathrm{z}\:=\:\boldsymbol{\mathrm{i}}\:−\:\mathrm{1} \\ $$$$\mathrm{Find}\:\:\:\boldsymbol{\mathrm{z}}^{−\mathrm{100}} \:=\:? \\ $$

Question Number 207274    Answers: 1   Comments: 0

log_(abc) a = 2 and log_(abc) b = 3 find: log_(abc) c = ?

$$\mathrm{log}_{\boldsymbol{\mathrm{abc}}} \:\mathrm{a}\:=\:\mathrm{2}\:\:\:\mathrm{and}\:\:\:\mathrm{log}_{\boldsymbol{\mathrm{abc}}} \:\mathrm{b}\:=\:\mathrm{3} \\ $$$$\mathrm{find}:\:\:\mathrm{log}_{\boldsymbol{\mathrm{abc}}} \:\mathrm{c}\:=\:? \\ $$

Question Number 207272    Answers: 0   Comments: 2

arcsin (x^2 − 3) = arcsin (x^2 + 3x + 4) x = ?

$$\mathrm{arcsin}\:\left(\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{3}\right)\:=\:\mathrm{arcsin}\:\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{3x}\:+\:\mathrm{4}\right) \\ $$$$\boldsymbol{\mathrm{x}}\:=\:? \\ $$

Question Number 207271    Answers: 1   Comments: 0

arg ( ((2 − i)/i) ) = 2 Find: Imz + Rez = ?

$$\mathrm{arg}\:\left(\:\frac{\mathrm{2}\:−\:\boldsymbol{\mathrm{i}}}{\boldsymbol{\mathrm{i}}}\:\right)\:=\:\mathrm{2} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{Imz}\:+\:\mathrm{Rez}\:=\:? \\ $$

Question Number 207270    Answers: 1   Comments: 0

{ ((∣x∣ + y − 1 = 0)),((x − y − 1 = 0)) :} find: 2x−3y = ?

$$\begin{cases}{\mid\mathrm{x}\mid\:+\:\mathrm{y}\:−\:\mathrm{1}\:=\:\mathrm{0}}\\{\mathrm{x}\:−\:\mathrm{y}\:−\:\mathrm{1}\:=\:\mathrm{0}}\end{cases}\:\:\:\mathrm{find}:\:\:\mathrm{2x}−\mathrm{3y}\:=\:? \\ $$

Question Number 207269    Answers: 0   Comments: 0

Find: 4 cos^2 40 − (1/(cos 20)) = ?

$$\mathrm{Find}:\:\:\:\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\mathrm{40}\:−\:\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{20}}\:=\:? \\ $$

Question Number 207250    Answers: 2   Comments: 0

If 2^a = 5 , 3^b = 9 and 25^c = 8 Find: a∙b∙c = ?

$$\mathrm{If}\:\:\:\mathrm{2}^{\boldsymbol{\mathrm{a}}} \:=\:\mathrm{5}\:\:,\:\:\mathrm{3}^{\boldsymbol{\mathrm{b}}} \:=\:\mathrm{9}\:\:\mathrm{and}\:\:\mathrm{25}^{\boldsymbol{\mathrm{c}}} \:=\:\mathrm{8} \\ $$$$\mathrm{Find}:\:\:\mathrm{a}\centerdot\mathrm{b}\centerdot\mathrm{c}\:=\:? \\ $$

Question Number 207249    Answers: 1   Comments: 0

{ ((x^2 + 2y^2 + xy = 37)),((y^2 + 2x^2 + 2xy = 26)) :} find: x^2 + y^2 = ?

$$\begin{cases}{\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{2y}^{\mathrm{2}} \:\:+\:\:\mathrm{xy}\:\:=\:\:\mathrm{37}}\\{\mathrm{y}^{\mathrm{2}} \:\:+\:\:\mathrm{2x}^{\mathrm{2}} \:\:+\:\:\mathrm{2xy}\:\:=\:\:\mathrm{26}}\end{cases}\:\:\:\:\mathrm{find}:\:\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:=\:? \\ $$

Question Number 207248    Answers: 1   Comments: 0

If f(x) = 3^(x+1) Find ((f(2x + 1))/(f(x + 2))) = ?

$$\mathrm{If}\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{3}^{\boldsymbol{\mathrm{x}}+\mathrm{1}} \\ $$$$\mathrm{Find}\:\:\:\frac{\mathrm{f}\left(\mathrm{2x}\:+\:\mathrm{1}\right)}{\mathrm{f}\left(\mathrm{x}\:+\:\mathrm{2}\right)}\:\:=\:\:? \\ $$

Question Number 207247    Answers: 1   Comments: 1

8 + ((18)/(2 + (7/(5 + (2/x))))) = 14 find: x = ?

$$\mathrm{8}\:\:+\:\:\frac{\mathrm{18}}{\mathrm{2}\:\:+\:\:\frac{\mathrm{7}}{\mathrm{5}\:\:+\:\:\frac{\mathrm{2}}{\boldsymbol{\mathrm{x}}}}}\:\:\:=\:\:\:\mathrm{14}\:\:\:\:\:\mathrm{find}:\:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$

  Pg 153      Pg 154      Pg 155      Pg 156      Pg 157      Pg 158      Pg 159      Pg 160      Pg 161      Pg 162   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com