Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 158
Question Number 206151 Answers: 1 Comments: 0
Question Number 206146 Answers: 0 Comments: 0
Question Number 206142 Answers: 1 Comments: 0
$$\:\:\:\:\mathrm{let}\:\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+{p}\left({x}\right)\frac{{dy}}{{dx}}+{q}\left({x}\right){y}=\mathrm{0}\:,\:{x}\in\mathbb{R}\:\mathrm{where}\: \\ $$$$\:\:\:\:{p}\left({x}\right)\:\mathrm{and}\:{q}\left({x}\right)\:\mathrm{are}\:\mathrm{continuous}\:\mathrm{function}\:\mathrm{if} \\ $$$$\:\:\:\:{y}_{\mathrm{1}} =\:\mathrm{sin}{x}−\mathrm{2cos}{x}\:{and}\:{y}_{\mathrm{2}} \:=\:\mathrm{2sin}{x}\:+\mathrm{cos}{x} \\ $$$$\:\:\:\:\mathrm{are}\:{L}.{I}\:\left(\mathrm{linearly}\:\mathrm{independent}\right)\:\mathrm{solution} \\ $$$$\:\:\:\:\:\mathrm{then}\:\:\mid\mathrm{4}{p}\left(\mathrm{0}\right)+\mathrm{2}{q}\left(\mathrm{1}\right)\mid\:=\:?\:\:\: \\ $$
Question Number 206136 Answers: 1 Comments: 0
Question Number 206129 Answers: 1 Comments: 0
Question Number 206111 Answers: 3 Comments: 1
Question Number 206108 Answers: 3 Comments: 0
$$\mathrm{If}\:{x}\:=\:\sqrt{\frac{\sqrt{\mathrm{5}}\:+\:\mathrm{1}}{\:\sqrt{\mathrm{5}}\:−\:\mathrm{1}}}\:\mathrm{then}\:{x}^{\mathrm{12}} \:=\:? \\ $$
Question Number 206107 Answers: 0 Comments: 4
$$\mathrm{can}\:\mathrm{you}\:\mathrm{guy}\:\mathrm{explian}\:\mathrm{why} \\ $$$$\mathrm{we}\:\mathrm{need}\:\mathrm{a}\:\mathrm{eighgen}\:\mathrm{value}\:\mathrm{eighgen}\:\mathrm{vector} \\ $$$$\mathrm{and}\:\mathrm{mean}?? \\ $$$$\mathrm{such}\:\mathrm{as}\:\mathrm{A}\boldsymbol{\mathrm{v}}=\boldsymbol{\lambda\mathrm{v}} \\ $$$$ \\ $$
Question Number 206104 Answers: 2 Comments: 0
$$\:\:\: \mathrm{210}^{ } \:=\:\mathrm{7}^{− } \:=\:\mathrm{3}^{ } \:=\:\mathrm{2}^{− } \:=\: \mathrm{5}^{− } \\ $$$$\:\:\:\: \\ $$$$\:\:\: \frac{ }{ } \frac{ }{ } \frac{\mathrm{1}}{ } \frac{\mathrm{1}}{ } \frac{\mathrm{1}}{ } \\ $$
Question Number 206096 Answers: 1 Comments: 0
$$\int\frac{\mathrm{1}}{{x}^{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:.{dx} \\ $$
Question Number 206095 Answers: 2 Comments: 0
Question Number 206093 Answers: 2 Comments: 0
Question Number 206082 Answers: 2 Comments: 0
$$\mathrm{If}\:\:\:\mathrm{cos}\boldsymbol{\alpha}\:=\:\mathrm{sin}\boldsymbol{\alpha}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$$\mathrm{Find}\:\:\:\mathrm{sin2}\boldsymbol{\alpha}\:=\:? \\ $$
Question Number 206079 Answers: 3 Comments: 0
Question Number 206078 Answers: 0 Comments: 1
Question Number 206074 Answers: 0 Comments: 1
$$\left({x}_{\mathrm{1}} \:−\:{x}_{\mathrm{2}} \:+\:{x}_{\mathrm{3}} \right)^{\mathrm{2}} \:=\:{x}_{\mathrm{2}} \left({x}_{\mathrm{4}} \:+\:{x}_{\mathrm{5}} \:−\:{x}_{\mathrm{2}} \right) \\ $$$$\left({x}_{\mathrm{2}} \:−\:{x}_{\mathrm{3}} \:+\:{x}_{\mathrm{4}} \right)^{\mathrm{2}} \:=\:{x}_{\mathrm{3}} \left({x}_{\mathrm{5}} \:+\:{x}_{\mathrm{1}} \:−\:{x}_{\mathrm{3}} \right) \\ $$$$\left({x}_{\mathrm{3}} \:−\:{x}_{\mathrm{4}} \:+\:{x}_{\mathrm{5}} \right)^{\mathrm{2}} \:=\:{x}_{\mathrm{4}} \left({x}_{\mathrm{1}} \:+\:{x}_{\mathrm{2}} \:−\:{x}_{\mathrm{4}} \right) \\ $$$$\left({x}_{\mathrm{4}} \:−\:{x}_{\mathrm{5}} \:+\:{x}_{\mathrm{1}} \right)^{\mathrm{2}} \:=\:{x}_{\mathrm{5}} \left({x}_{\mathrm{2}} \:+\:{x}_{\mathrm{3}} \:−\:{x}_{\mathrm{5}} \right) \\ $$$$\left({x}_{\mathrm{5}} \:−\:{x}_{\mathrm{1}} \:+\:{x}_{\mathrm{2}} \right)^{\mathrm{2}} \:=\:{x}_{\mathrm{1}} \left({x}_{\mathrm{3}} \:+\:{x}_{\mathrm{4}} \:−\:{x}_{\mathrm{1}} \right) \\ $$$$\mathrm{Find}\:\frac{\mathrm{2}{x}_{\mathrm{1}} \:+\:{x}_{\mathrm{2}} \:+\:{x}_{\mathrm{3}} }{\mathrm{3}{x}_{\mathrm{4}} \:−\:{x}_{\mathrm{5}} }\:. \\ $$
Question Number 206072 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\pi} {arctan}\left(\frac{{ln}\left({sin}\left({x}\right)\right)}{{x}}\right){dx}=...? \\ $$
Question Number 206069 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−{x}^{\mathrm{3}} +{x}}{\mathrm{sin}\:{x}} \\ $$
Question Number 206066 Answers: 2 Comments: 0
$$\mathrm{Find}: \\ $$$$\frac{\mathrm{3}}{\mathrm{4}}\:\centerdot\:\frac{\mathrm{8}}{\mathrm{9}}\:\centerdot\:\frac{\mathrm{15}}{\mathrm{16}}\:\centerdot\:...\:\centerdot\:\frac{\mathrm{120}}{\mathrm{121}}\:=\:? \\ $$
Question Number 206064 Answers: 3 Comments: 1
Question Number 206063 Answers: 2 Comments: 0
$$\mathrm{If}\:\left({x}\:+\:\sqrt{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\right)\left({y}\:+\:\sqrt{\mathrm{1}\:+\:{y}^{\mathrm{2}} }\right)\:=\:\mathrm{1}\:\mathrm{then} \\ $$$$\mathrm{find}\:\left({x}\:+\:{y}\right)^{\mathrm{2}} . \\ $$
Question Number 206060 Answers: 1 Comments: 0
Question Number 206053 Answers: 1 Comments: 1
Question Number 206048 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{2}^{\mathrm{sin}^{\mathrm{2}} \theta} \:+\:\mathrm{2}^{\mathrm{cos}^{\mathrm{2}} \theta} \:\geqslant\:\mathrm{2}\sqrt{\mathrm{2}}. \\ $$
Question Number 206047 Answers: 1 Comments: 0
Question Number 206045 Answers: 2 Comments: 1
Pg 153 Pg 154 Pg 155 Pg 156 Pg 157 Pg 158 Pg 159 Pg 160 Pg 161 Pg 162
Terms of Service
Privacy Policy
Contact: info@tinkutara.com