Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 158

Question Number 207274    Answers: 1   Comments: 0

log_(abc) a = 2 and log_(abc) b = 3 find: log_(abc) c = ?

$$\mathrm{log}_{\boldsymbol{\mathrm{abc}}} \:\mathrm{a}\:=\:\mathrm{2}\:\:\:\mathrm{and}\:\:\:\mathrm{log}_{\boldsymbol{\mathrm{abc}}} \:\mathrm{b}\:=\:\mathrm{3} \\ $$$$\mathrm{find}:\:\:\mathrm{log}_{\boldsymbol{\mathrm{abc}}} \:\mathrm{c}\:=\:? \\ $$

Question Number 207272    Answers: 0   Comments: 2

arcsin (x^2 − 3) = arcsin (x^2 + 3x + 4) x = ?

$$\mathrm{arcsin}\:\left(\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{3}\right)\:=\:\mathrm{arcsin}\:\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{3x}\:+\:\mathrm{4}\right) \\ $$$$\boldsymbol{\mathrm{x}}\:=\:? \\ $$

Question Number 207271    Answers: 1   Comments: 0

arg ( ((2 − i)/i) ) = 2 Find: Imz + Rez = ?

$$\mathrm{arg}\:\left(\:\frac{\mathrm{2}\:−\:\boldsymbol{\mathrm{i}}}{\boldsymbol{\mathrm{i}}}\:\right)\:=\:\mathrm{2} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{Imz}\:+\:\mathrm{Rez}\:=\:? \\ $$

Question Number 207270    Answers: 1   Comments: 0

{ ((∣x∣ + y − 1 = 0)),((x − y − 1 = 0)) :} find: 2x−3y = ?

$$\begin{cases}{\mid\mathrm{x}\mid\:+\:\mathrm{y}\:−\:\mathrm{1}\:=\:\mathrm{0}}\\{\mathrm{x}\:−\:\mathrm{y}\:−\:\mathrm{1}\:=\:\mathrm{0}}\end{cases}\:\:\:\mathrm{find}:\:\:\mathrm{2x}−\mathrm{3y}\:=\:? \\ $$

Question Number 207269    Answers: 0   Comments: 0

Find: 4 cos^2 40 − (1/(cos 20)) = ?

$$\mathrm{Find}:\:\:\:\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\mathrm{40}\:−\:\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{20}}\:=\:? \\ $$

Question Number 207250    Answers: 2   Comments: 0

If 2^a = 5 , 3^b = 9 and 25^c = 8 Find: a∙b∙c = ?

$$\mathrm{If}\:\:\:\mathrm{2}^{\boldsymbol{\mathrm{a}}} \:=\:\mathrm{5}\:\:,\:\:\mathrm{3}^{\boldsymbol{\mathrm{b}}} \:=\:\mathrm{9}\:\:\mathrm{and}\:\:\mathrm{25}^{\boldsymbol{\mathrm{c}}} \:=\:\mathrm{8} \\ $$$$\mathrm{Find}:\:\:\mathrm{a}\centerdot\mathrm{b}\centerdot\mathrm{c}\:=\:? \\ $$

Question Number 207249    Answers: 1   Comments: 0

{ ((x^2 + 2y^2 + xy = 37)),((y^2 + 2x^2 + 2xy = 26)) :} find: x^2 + y^2 = ?

$$\begin{cases}{\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{2y}^{\mathrm{2}} \:\:+\:\:\mathrm{xy}\:\:=\:\:\mathrm{37}}\\{\mathrm{y}^{\mathrm{2}} \:\:+\:\:\mathrm{2x}^{\mathrm{2}} \:\:+\:\:\mathrm{2xy}\:\:=\:\:\mathrm{26}}\end{cases}\:\:\:\:\mathrm{find}:\:\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:=\:? \\ $$

Question Number 207248    Answers: 1   Comments: 0

If f(x) = 3^(x+1) Find ((f(2x + 1))/(f(x + 2))) = ?

$$\mathrm{If}\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{3}^{\boldsymbol{\mathrm{x}}+\mathrm{1}} \\ $$$$\mathrm{Find}\:\:\:\frac{\mathrm{f}\left(\mathrm{2x}\:+\:\mathrm{1}\right)}{\mathrm{f}\left(\mathrm{x}\:+\:\mathrm{2}\right)}\:\:=\:\:? \\ $$

Question Number 207247    Answers: 1   Comments: 1

8 + ((18)/(2 + (7/(5 + (2/x))))) = 14 find: x = ?

$$\mathrm{8}\:\:+\:\:\frac{\mathrm{18}}{\mathrm{2}\:\:+\:\:\frac{\mathrm{7}}{\mathrm{5}\:\:+\:\:\frac{\mathrm{2}}{\boldsymbol{\mathrm{x}}}}}\:\:\:=\:\:\:\mathrm{14}\:\:\:\:\:\mathrm{find}:\:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$

Question Number 207243    Answers: 1   Comments: 0

Question Number 207233    Answers: 1   Comments: 1

1. lim_(n→∞) ( ((n − 1)/(n + 2)) )^(n + 3) = ? 2. lim_(x→∞) ( ((5x + 6)/(2x − 9)) )^x^2 = ? 3. lim_(n→∞) ( ((n + 3)/(n + 1)) )^n = ?

$$\mathrm{1}.\:\:\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\left(\:\frac{\mathrm{n}\:−\:\mathrm{1}}{\mathrm{n}\:+\:\mathrm{2}}\:\right)^{\boldsymbol{\mathrm{n}}\:+\:\mathrm{3}} \:=\:\:? \\ $$$$ \\ $$$$\mathrm{2}.\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\infty} {\mathrm{lim}}\:\left(\:\frac{\mathrm{5x}\:+\:\mathrm{6}}{\mathrm{2x}\:−\:\mathrm{9}}\:\right)^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \:=\:\:? \\ $$$$ \\ $$$$\mathrm{3}.\:\:\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\left(\:\frac{\mathrm{n}\:+\:\mathrm{3}}{\mathrm{n}\:+\:\mathrm{1}}\:\right)^{\boldsymbol{\mathrm{n}}} \:=\:\:? \\ $$

Question Number 207232    Answers: 0   Comments: 0

Consider the relation R whose graph is giveny b R( (57)(58)(78)(97)(98)(55)(66)(56)(77)(88)99)o n the set S 56789 Find 1. the set of alla first(lest) elements of (SR) 2. the set of alla lst element of (SR) 3. the set of all minimalelements of (SR) 4. the set of alla mximal elements of (SR

$$ \\ $$$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{relation}\:\mathrm{R}\:\mathrm{whose}\:\mathrm{graph}\:\mathrm{is}\:\mathrm{giveny} \\ $$$$\mathrm{b}\:\mathrm{R}\left(\right. \\ $$$$\left.\left(\mathrm{57}\right)\left(\mathrm{58}\right)\left(\mathrm{78}\right)\left(\mathrm{97}\right)\left(\mathrm{98}\right)\left(\mathrm{55}\right)\left(\mathrm{66}\right)\left(\mathrm{56}\right)\left(\mathrm{77}\right)\left(\mathrm{88}\right)\mathrm{99}\right)\mathrm{o} \\ $$$$\mathrm{n}\:\mathrm{the}\:\mathrm{set}\:\mathrm{S}\:\:\mathrm{56789}\:\mathrm{Find}\:\:\:\:\:\mathrm{1}.\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{alla} \\ $$$$\mathrm{first}\left(\mathrm{lest}\right)\:\mathrm{elements}\:\mathrm{of}\:\left(\mathrm{SR}\right)\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}.\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{alla} \\ $$$$\mathrm{lst}\:\mathrm{element}\:\mathrm{of}\:\left(\mathrm{SR}\right)\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}.\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{all}\: \\ $$$$\mathrm{minimalelements}\:\mathrm{of}\:\left(\mathrm{SR}\right)\:\:\:\:\:\:\:\:\:\:\mathrm{4}.\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{alla} \\ $$$$\mathrm{mximal}\:\mathrm{elements}\:\mathrm{of}\:\left(\mathrm{SR}\right. \\ $$

Question Number 207231    Answers: 1   Comments: 0

Question Number 207230    Answers: 1   Comments: 0

Question Number 207262    Answers: 1   Comments: 0

a_n - number series a_1 = 5 d = 3 a_2 ^2 −a_1 ^2 + a_4 ^2 −a_3 ^2 + a_6 ^2 −a_5 ^2 + ... + a_(10) ^2 −a_9 ^2 = ?

$$\mathrm{a}_{\boldsymbol{\mathrm{n}}} \:-\:\mathrm{number}\:\mathrm{series} \\ $$$$\mathrm{a}_{\mathrm{1}} \:=\:\mathrm{5} \\ $$$$\mathrm{d}\:=\:\mathrm{3} \\ $$$$\mathrm{a}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{a}_{\mathrm{1}} ^{\mathrm{2}} \:+\:\mathrm{a}_{\mathrm{4}} ^{\mathrm{2}} −\mathrm{a}_{\mathrm{3}} ^{\mathrm{2}} \:+\:\mathrm{a}_{\mathrm{6}} ^{\mathrm{2}} −\mathrm{a}_{\mathrm{5}} ^{\mathrm{2}} \:+\:...\:+\:\mathrm{a}_{\mathrm{10}} ^{\mathrm{2}} −\mathrm{a}_{\mathrm{9}} ^{\mathrm{2}} \:=\:? \\ $$

Question Number 207226    Answers: 2   Comments: 0

Find: (((2 − (√2))^8 ∙ (6 + 4 (√2))^8 )/((2 + (√2))^8 )) = ?

$$\mathrm{Find}:\:\:\:\frac{\left(\mathrm{2}\:−\:\sqrt{\mathrm{2}}\right)^{\mathrm{8}} \:\centerdot\:\left(\mathrm{6}\:+\:\mathrm{4}\:\sqrt{\mathrm{2}}\right)^{\mathrm{8}} }{\left(\mathrm{2}\:+\:\sqrt{\mathrm{2}}\right)^{\mathrm{8}} }\:=\:? \\ $$

Question Number 207225    Answers: 0   Comments: 1

6×5=30

$$\mathrm{6}×\mathrm{5}=\mathrm{30} \\ $$

Question Number 207220    Answers: 2   Comments: 0

Find: (i − 1)^(−100) = ?

$$\mathrm{Find}:\:\:\:\left(\boldsymbol{\mathrm{i}}\:−\:\mathrm{1}\right)^{−\mathrm{100}} \:\:=\:\:? \\ $$

Question Number 207219    Answers: 1   Comments: 0

Find: ((tg 20)/(1 + tg^2 20)) + ((tg 21)/(1 + tg^2 21)) +...+ ((tg 70)/(1 + tg^2 70))

$$\mathrm{Find}: \\ $$$$\frac{\mathrm{tg}\:\mathrm{20}}{\mathrm{1}\:+\:\mathrm{tg}^{\mathrm{2}} \:\mathrm{20}}\:+\:\frac{\mathrm{tg}\:\mathrm{21}}{\mathrm{1}\:+\:\mathrm{tg}^{\mathrm{2}} \:\mathrm{21}}\:+...+\:\frac{\mathrm{tg}\:\mathrm{70}}{\mathrm{1}\:+\:\mathrm{tg}^{\mathrm{2}} \:\mathrm{70}} \\ $$

Question Number 207218    Answers: 1   Comments: 0

2^x + ((6 ∙ 2^x − 10)/(2^x − 2)) = 4 ∙ 2^x + (1/(2^x − 2)) Find: x = ?

$$\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:\:+\:\:\frac{\mathrm{6}\:\centerdot\:\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{10}}{\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{2}}\:\:=\:\:\mathrm{4}\:\centerdot\:\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:\:+\:\:\frac{\mathrm{1}}{\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{2}} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{x}\:=\:? \\ $$

Question Number 207212    Answers: 1   Comments: 1

arcsin (sin 6) = ?

$$\mathrm{arcsin}\:\left(\mathrm{sin}\:\mathrm{6}\right)\:=\:? \\ $$

Question Number 207207    Answers: 1   Comments: 0

100 x^(lg x) = x^3 Find: x = ?

$$\mathrm{100}\:\mathrm{x}^{\boldsymbol{\mathrm{lg}}\:\boldsymbol{\mathrm{x}}} \:\:=\:\:\mathrm{x}^{\mathrm{3}} \\ $$$$\mathrm{Find}:\:\:\mathrm{x}\:=\:? \\ $$

Question Number 207206    Answers: 2   Comments: 0

(√(x−3 + 2 (√(x−4)))) − (√(x + 5−6 (√(x−2)))) = 2 Find: x = ?

$$\sqrt{\mathrm{x}−\mathrm{3}\:+\:\mathrm{2}\:\sqrt{\mathrm{x}−\mathrm{4}}}\:−\:\sqrt{\mathrm{x}\:+\:\mathrm{5}−\mathrm{6}\:\sqrt{\mathrm{x}−\mathrm{2}}}\:=\:\mathrm{2} \\ $$$$\mathrm{Find}:\:\:\mathrm{x}\:=\:? \\ $$

Question Number 207205    Answers: 1   Comments: 0

{ ((x^2 + xy = 4x)),((y^2 + xy = 4y)) :} Find: log_(16) (x_1 + y_1 + x_2 + y_2 ) = ?

$$\begin{cases}{\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{xy}\:\:=\:\:\mathrm{4x}}\\{\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{xy}\:\:=\:\:\mathrm{4y}}\end{cases} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{log}_{\mathrm{16}} \:\left(\mathrm{x}_{\mathrm{1}} \:+\:\mathrm{y}_{\mathrm{1}} \:+\:\mathrm{x}_{\mathrm{2}} \:+\:\mathrm{y}_{\mathrm{2}} \right)\:=\:? \\ $$

Question Number 207197    Answers: 2   Comments: 0

If xy = (1/3) , xz = (3/8) and yz = (1/2) For x , y and z compare.

$$\mathrm{If}\:\:\:\mathrm{xy}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:\:\:,\:\:\:\mathrm{xz}\:=\:\frac{\mathrm{3}}{\mathrm{8}}\:\:\:\mathrm{and}\:\:\:\mathrm{yz}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{For}\:\:\:\mathrm{x}\:,\:\mathrm{y}\:\mathrm{and}\:\mathrm{z}\:\:\:\mathrm{compare}. \\ $$

Question Number 207196    Answers: 0   Comments: 0

if 2(a^2 −b^2 )^(5 ) it is a term of notable quotient of ((a+b)^n −(a−b)^n )/(ab+b^2 ) find n.

$${if}\:\mathrm{2}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{5}\:} {it}\:{is}\:{a}\:{term}\:{of}\:{notable}\:{quotient}\:{of}\:\:\left(\left({a}+{b}\right)^{{n}} −\left({a}−{b}\right)^{{n}} \right)/\left({ab}+{b}^{\mathrm{2}} \right)\:\:{find}\:\:{n}. \\ $$

  Pg 153      Pg 154      Pg 155      Pg 156      Pg 157      Pg 158      Pg 159      Pg 160      Pg 161      Pg 162   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com