Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1579
Question Number 52091 Answers: 2 Comments: 1
$$\mathrm{3}^{{x}} +\mathrm{4}^{{x}} =\mathrm{5}^{{x}} \\ $$$${find}\:{x} \\ $$$${BY}\:{ISHOLA} \\ $$
Question Number 52089 Answers: 0 Comments: 0
Question Number 52088 Answers: 0 Comments: 0
$${determine}\:{the}\:{value}\:{of}\:\mathrm{5}{e}^{\mathrm{0}.\mathrm{5}\:} \:{correct}\:{to}\:\mathrm{5}\:{significant}\:{fig}\:{using}\:{d}\:{power}\:{series}\:{of}\:{e}^{{x}} \\ $$
Question Number 52087 Answers: 1 Comments: 1
$$\mathrm{If}\:\mathrm{1},{a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,...,{a}_{{n}−\mathrm{1}} \:\mathrm{are}\:{n}^{{th}} \:\mathrm{roots}\:\mathrm{of} \\ $$$$\mathrm{unity}\:\mathrm{the}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{1}+{a}_{\mathrm{1}} }+\frac{\mathrm{1}}{\mathrm{1}+{a}_{\mathrm{2}} }+..+\frac{\mathrm{1}}{\mathrm{1}+{a}_{{n}−\mathrm{1}} } \\ $$$${n}\:\mathrm{is}\:\mathrm{odd}\:\mathrm{number} \\ $$
Question Number 52086 Answers: 1 Comments: 3
$$\mathrm{If}\:\mathrm{1},{a}_{\mathrm{1},} {a}_{\mathrm{2}} ,...,{a}_{{n}−\mathrm{1}} \:\mathrm{are}\:{n}^{{th}} \:\mathrm{roots}\:\mathrm{of} \\ $$$$\mathrm{unity},\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}. \\ $$$$\left(\mathrm{1}+{a}_{\mathrm{1}} \right)\left(\mathrm{1}+{a}_{\mathrm{2}} \right)..\left(\mathrm{1}+{a}_{{n}−\mathrm{1}} \right)= \\ $$$${n}\:\:\mathrm{if}\:{n}\:\mathrm{is}\:\mathrm{even} \\ $$$$\mathrm{0}\:\mathrm{if}\:{n}\:\mathrm{is}\:\mathrm{odd} \\ $$
Question Number 52082 Answers: 1 Comments: 1
Question Number 52079 Answers: 1 Comments: 1
$${Sum}\:{to}\:{the}\:{n}\:{terms}\:{of}\:{the}\:{series}\:{whose}\:{n}^{{th}\:} \:{term}\:{is}\:\mathrm{2}^{{n}−\mathrm{1}\:} \:+\:\mathrm{8}{n}^{\mathrm{3}} \:−\mathrm{6}{n}^{\mathrm{2}} \\ $$
Question Number 52075 Answers: 0 Comments: 0
Question Number 52072 Answers: 0 Comments: 0
Question Number 52061 Answers: 2 Comments: 3
Question Number 52059 Answers: 0 Comments: 1
Question Number 52058 Answers: 1 Comments: 0
Question Number 52052 Answers: 0 Comments: 1
Question Number 52038 Answers: 1 Comments: 0
$$\left(\mathrm{6x}+\mathrm{8}\right)+\mathrm{3}=\left(\mathrm{8x}−\mathrm{5}\right)−\mathrm{6}\:\:\: \\ $$$$\mathrm{sir}\:\mathrm{plz}\:\mathrm{help}\:\mathrm{me} \\ $$
Question Number 52034 Answers: 1 Comments: 1
Question Number 52043 Answers: 1 Comments: 1
Question Number 52031 Answers: 2 Comments: 1
Question Number 52030 Answers: 1 Comments: 0
$${given}\:{that}\:{log}\mathrm{2}=\mathrm{0}.\mathrm{3010}\:{log}\mathrm{3}=\mathrm{0}.\mathrm{477}\:{log}\mathrm{5}=\mathrm{0}.\mathrm{699} \\ $$$${find}\:{the}\:{values}\:{of}\:{log}\sqrt{\left(\mathrm{0}.\mathrm{2}\right)} \\ $$$$ \\ $$
Question Number 52449 Answers: 0 Comments: 0
$${let}\:{j}={e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \:\:\:{and}\:{P}\left({x}\right)=\left(\mathrm{1}+{jx}\right)^{{n}} −\left(\mathrm{1}−{jx}\right)^{{n}} \:\:{with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){factorize}\:{P}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right)\:\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {P}\left({x}\right){dx}. \\ $$$$\left.\mathrm{4}\right)\:{decompose}\:{inside}\:{C}\left({x}\right)\:{the}\:{fraction}\:{F}\left({x}\right)=\frac{\mathrm{1}}{{P}\left({x}\right)} \\ $$
Question Number 52025 Answers: 4 Comments: 8
Question Number 52016 Answers: 1 Comments: 1
Question Number 52012 Answers: 0 Comments: 2
Question Number 52138 Answers: 1 Comments: 0
Question Number 52137 Answers: 0 Comments: 0
Question Number 52007 Answers: 2 Comments: 0
$$\mathrm{Solve}:\:\:\:\:\:\:\:\:\:\:\left(\frac{\boldsymbol{\mathrm{x}}}{\mathrm{4}}\right)^{\boldsymbol{\mathrm{log}}_{\mathrm{5}} \mathrm{50}\boldsymbol{\mathrm{x}}} \:\:\:=\:\:\:\:\boldsymbol{\mathrm{x}}^{\mathrm{6}} \\ $$
Question Number 52006 Answers: 1 Comments: 1
$${Differentiate}\:\mathrm{sin}^{−\mathrm{1}} \left[\frac{\mathrm{ln}\:{x}}{\mathrm{cos}\:{x}}\right] \\ $$$${with}\:{respect}\:{to}\:\mathrm{tan}\:{x}^{\mathrm{2}} \\ $$
Pg 1574 Pg 1575 Pg 1576 Pg 1577 Pg 1578 Pg 1579 Pg 1580 Pg 1581 Pg 1582 Pg 1583
Terms of Service
Privacy Policy
Contact: info@tinkutara.com