Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1579

Question Number 49061    Answers: 2   Comments: 0

The numerical value of tan (2 tan^(−1) (1/5) − (π/4)) is

$$\mathrm{The}\:\mathrm{numerical}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\mathrm{tan}\:\left(\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{5}}\:−\:\frac{\pi}{\mathrm{4}}\right)\:\:\mathrm{is} \\ $$

Question Number 49060    Answers: 2   Comments: 0

Question Number 49037    Answers: 0   Comments: 0

Question Number 49036    Answers: 1   Comments: 4

Question Number 49035    Answers: 0   Comments: 0

Question Number 49034    Answers: 1   Comments: 0

Question Number 49032    Answers: 2   Comments: 0

∫(1/(x^3 +1))dx=??

$$\int\frac{\mathrm{1}}{{x}^{\mathrm{3}} +\mathrm{1}}{dx}=?? \\ $$

Question Number 49028    Answers: 0   Comments: 0

n^2 −1 est olympique

$${n}^{\mathrm{2}} −\mathrm{1}\:{est}\:{olympique} \\ $$

Question Number 49020    Answers: 2   Comments: 2

Question Number 49008    Answers: 1   Comments: 0

Question Number 49007    Answers: 0   Comments: 0

Question Number 49006    Answers: 1   Comments: 0

Question Number 48993    Answers: 1   Comments: 0

Question Number 49014    Answers: 3   Comments: 1

Question Number 48984    Answers: 0   Comments: 1

Question Number 48983    Answers: 1   Comments: 0

Question Number 48982    Answers: 2   Comments: 0

Question Number 48981    Answers: 1   Comments: 0

Question Number 48977    Answers: 2   Comments: 0

Question Number 48976    Answers: 1   Comments: 0

Question Number 48966    Answers: 1   Comments: 2

Question Number 48960    Answers: 1   Comments: 0

help me sir plz

$${help}\:{me}\:{sir}\:{plz} \\ $$

Question Number 49027    Answers: 0   Comments: 0

omoxnn dit qu un entier k est olympique s il existe 4 entiers a b c et d tous premiers avec k tel que k divise a^4 +b^4 +c^4 +d^4 .Soit n un entier naturel quelconque montrer que n^2 −1 divise a^4 +b^4 +c^4 +d^4

$${omoxnn}\:{dit}\:{qu}\:{un}\:{entier}\:{k}\:{est}\:{olympique}\:{s}\:{il}\:{existe}\:\mathrm{4}\:{entiers}\:{a}\:{b}\:{c}\:{et}\:{d}\:{tous}\:{premiers}\:{avec}\:{k}\:{tel}\:{que}\:{k}\:{divise}\:{a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} +{d}^{\mathrm{4}} .{Soit}\:{n}\:{un}\:{entier}\:{naturel}\:{quelconque} \\ $$$${montrer}\:{que}\:{n}^{\mathrm{2}} −\mathrm{1}\:{divise}\:{a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} +{d}^{\mathrm{4}} \\ $$

Question Number 48958    Answers: 1   Comments: 0

Given the position vectors v_1 = 2i−2j and v_2 =2j a) show that the unit vector in the direction of v_1 −v_2 = (1/(√5))(i−2j) b) Write down the equation of the line that contains the position vectors v_1 and v_2 c) Find the cosine of the angle between v_1 and v_2

$${Given}\:{the}\:{position}\:{vectors}\:{v}_{\mathrm{1}} =\:\mathrm{2}\boldsymbol{{i}}−\mathrm{2}\boldsymbol{{j}}\:{and}\:{v}_{\mathrm{2}} =\mathrm{2}\boldsymbol{{j}} \\ $$$$\left.{a}\right)\:{show}\:{that}\:{the}\:{unit}\:{vector}\:{in}\:{the}\:{direction}\:{of}\:{v}_{\mathrm{1}} −{v}_{\mathrm{2}} =\:\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\left({i}−\mathrm{2}{j}\right) \\ $$$$\left.{b}\right)\:{Write}\:{down}\:{the}\:{equation}\:{of}\:{the}\:{line}\:{that}\:{contains} \\ $$$${the}\:{position}\:{vectors}\:{v}_{\mathrm{1}} \:{and}\:{v}_{\mathrm{2}} \\ $$$$\left.{c}\right)\:{Find}\:{the}\:{cosine}\:{of}\:{the}\:{angle}\:{between}\:{v}_{\mathrm{1}} \:{and}\:{v}_{\mathrm{2}} \\ $$

Question Number 48956    Answers: 3   Comments: 0

((x+0.2)/(x−0.2))=((1.2)/(2.2)) sir plz help me

$$\frac{{x}+\mathrm{0}.\mathrm{2}}{{x}−\mathrm{0}.\mathrm{2}}=\frac{\mathrm{1}.\mathrm{2}}{\mathrm{2}.\mathrm{2}} \\ $$$${sir}\:{plz}\:{help}\:{me} \\ $$

Question Number 48955    Answers: 3   Comments: 0

Evaluate ∫_0 ^((√3)/4) ((2xsin^(−1) (2x))/(√(1−4x^2 ))) dx

$${Evaluate}\:\underset{\mathrm{0}} {\overset{\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}} {\int}}\:\frac{\mathrm{2}{x}\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)}{\sqrt{\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} }}\:{dx} \\ $$

  Pg 1574      Pg 1575      Pg 1576      Pg 1577      Pg 1578      Pg 1579      Pg 1580      Pg 1581      Pg 1582      Pg 1583   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com