Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1570
Question Number 49816 Answers: 2 Comments: 0
$$\frac{\mathrm{sin}^{\mathrm{6}} \mathrm{x}−\mathrm{cos}^{\mathrm{6}} \mathrm{x}}{\mathrm{sin}^{\mathrm{2}} \mathrm{xcos}^{\mathrm{2}} \mathrm{x}}.\mathrm{intregrate} \\ $$
Question Number 49815 Answers: 0 Comments: 3
$$\mathrm{sin}^{\mathrm{6}} \mathrm{x}−\mathrm{cos}^{\mathrm{6}} \mathrm{x}/\mathrm{sin}^{\mathrm{2}} \mathrm{xcos}^{\mathrm{2}} \mathrm{x} \\ $$
Question Number 49810 Answers: 1 Comments: 1
$${calculate}\: \\ $$$${S}_{{n}} \left({x}\right)=\left[\frac{{x}+\mathrm{1}}{\mathrm{2}}\right]\:+\:\left[\frac{{x}+\mathrm{2}}{\mathrm{4}}\right]\:+\left[\frac{{x}+\mathrm{4}}{\mathrm{8}}\right]+...\left[\frac{{x}+\mathrm{2}^{{n}} }{\mathrm{2}^{{n}+\mathrm{1}} }\right] \\ $$
Question Number 49809 Answers: 2 Comments: 1
$${solve}\:{the}\:{system}\:\:\:\begin{cases}{\frac{\mathrm{4}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{{x}}\:=\frac{\mathrm{5}\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }}{{y}}=\frac{\mathrm{6}\sqrt{\mathrm{1}+{z}^{\mathrm{2}} }}{{z}}}\\{{x}+{y}+{z}={xyz}.}\end{cases} \\ $$$$\left.\begin{matrix}{}\\{}\end{matrix}\right\} \\ $$
Question Number 49806 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}−{x}^{\mathrm{2}} {cos}\theta\right){d}\theta\:\:\:{with}\:\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}{cos}\theta\right){d}\theta\:. \\ $$
Question Number 49804 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)\:=\frac{{e}^{−{x}} }{{x}+\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\:{f}^{\left({n}\right)} \left({o}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$
Question Number 49803 Answers: 0 Comments: 0
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:\frac{\left({sinx}\right)^{{x}} \:−\mathrm{1}}{{x}^{{sinx}} \:−\mathrm{1}} \\ $$
Question Number 49802 Answers: 1 Comments: 0
$${find}\:{lim}_{{x}\rightarrow{e}} \:\:\:\frac{{e}^{{x}} \:−{e}^{{e}} }{{x}^{{e}} \:−{e}^{{e}} } \\ $$
Question Number 49800 Answers: 1 Comments: 0
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{\sqrt{\mathrm{1}+{x}+{x}^{\mathrm{2}} }−\sqrt{\mathrm{1}+\mathrm{2}{x}+{x}^{\mathrm{3}} }}{{x}^{\mathrm{2}} } \\ $$
Question Number 49798 Answers: 0 Comments: 0
$$\mathrm{help}\:\mathrm{me}\:\mathrm{sir}\:\mathrm{Plzzz} \\ $$
Question Number 49796 Answers: 0 Comments: 0
Question Number 49790 Answers: 0 Comments: 1
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir} \\ $$
Question Number 49786 Answers: 0 Comments: 1
$$\mathrm{Sir}\:\mathrm{l}\:\mathrm{couldn}'\mathrm{t}\:\mathrm{solve}\:\mathrm{these}\:\mathrm{questions} \\ $$$$\mathrm{pls}\:\mathrm{help}\:\mathrm{me} \\ $$
Question Number 49785 Answers: 1 Comments: 0
Question Number 49776 Answers: 0 Comments: 0
$$\mathrm{could}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me}\:\mathrm{sir} \\ $$
Question Number 49774 Answers: 1 Comments: 0
Question Number 49765 Answers: 2 Comments: 1
$$\mathrm{Solve}\:\mathrm{for}\:{x}\:\mathrm{in}\:\mathbb{R}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\mathrm{2}\:×\:\mathrm{sin}\left(\mathrm{3}{x}+\mathrm{4}\right)\:+\:\sqrt{\:\mathrm{3}\:}\:=\:\mathrm{0} \\ $$
Question Number 49764 Answers: 0 Comments: 0
$$\mathrm{sir}\:\mathrm{help}\:\mathrm{me}\:\mathrm{pls} \\ $$$$ \\ $$
Question Number 49763 Answers: 0 Comments: 0
Question Number 49767 Answers: 1 Comments: 0
Question Number 49768 Answers: 0 Comments: 1
$$\mathrm{help}\:\mathrm{me}\:\mathrm{sir}\:\mathrm{plz} \\ $$$$ \\ $$
Question Number 49761 Answers: 1 Comments: 0
$${Calculate}\:: \\ $$$$\:\int\frac{\:\:\mathrm{sin}^{\mathrm{2}} {x}\:\mathrm{cos}^{\mathrm{2}} {x}}{\left(\mathrm{sin}^{\mathrm{3}} {x}+\mathrm{cos}^{\mathrm{3}} {x}\right)^{\mathrm{2}} }\:{dx} \\ $$
Question Number 49760 Answers: 0 Comments: 3
Question Number 49755 Answers: 1 Comments: 0
$${Solve}\:{simultaneously}\:{for}\:\boldsymbol{{s}}\:{in}\:{terms} \\ $$$${of}\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}}. \\ $$$${h}^{\mathrm{2}} +\left({b}−{k}\right)^{\mathrm{2}} =\:{s}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:.....\left({i}\right) \\ $$$$\frac{{h}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{k}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:=\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....\left({ii}\right) \\ $$$$\left({h}−\frac{{s}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({k}+{b}\sqrt{\mathrm{1}−\frac{{s}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }}\:\right)=\:{s}^{\mathrm{2}} \:\:\:..\left({iii}\right). \\ $$
Question Number 49751 Answers: 1 Comments: 1
$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}\:+\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}}\:\:\mathrm{is} \\ $$
Question Number 49746 Answers: 1 Comments: 0
$$\int\frac{\mathrm{sin}^{\mathrm{8}} {x}−\mathrm{cos}^{\mathrm{8}} {x}}{\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} {x}.\mathrm{cos}^{\mathrm{2}} {x}}\:=\:? \\ $$$$\left.{a}\left.\right)\left.\:\frac{−\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}{x}\:\:\:{b}\right)\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}{x}\:\:\:{c}\right){None}. \\ $$
Pg 1565 Pg 1566 Pg 1567 Pg 1568 Pg 1569 Pg 1570 Pg 1571 Pg 1572 Pg 1573 Pg 1574
Terms of Service
Privacy Policy
Contact: info@tinkutara.com