Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1569
Question Number 42435 Answers: 1 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{\sqrt{{x}}\:+\sqrt{\mathrm{1}−{x}}} \\ $$
Question Number 42430 Answers: 1 Comments: 2
$${find}\:\int\:\:\:\:\:\:\:\frac{{dx}}{\mathrm{3}+{tan}^{\mathrm{2}} {x}} \\ $$
Question Number 42422 Answers: 1 Comments: 2
Question Number 42408 Answers: 0 Comments: 2
$$\sqrt{{a}−\sqrt{{a}+{x}\:}}+\:\sqrt{{a}+\sqrt{{a}−{x}}\:}\:=\:\mathrm{2}{x} \\ $$$${Solve}\:{for}\:{x}\:{in}\:{terms}\:{of}\:{a} \\ $$
Question Number 42407 Answers: 1 Comments: 1
$$\int\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{tanx}}\:\mathrm{dx} \\ $$
Question Number 42402 Answers: 0 Comments: 0
$${calculate}\:\int\int_{{x}\leqslant{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \leqslant\mathrm{1}} \:\:\:\frac{{dxdy}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$
Question Number 42395 Answers: 0 Comments: 1
$${calculate}\:\int\int_{{D}} \:\:\:\:\:\:\frac{{xy}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)}{dxdy}\:{with} \\ $$$${D}\:=\left\{\left({x},{y}\right)\in\:{R}^{\mathrm{2}} \:\:/\:\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:,\mathrm{0}\leqslant{y}\leqslant\mathrm{1},\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:\leqslant\mathrm{1}\right\} \\ $$
Question Number 42394 Answers: 1 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{{t}+\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:{dt} \\ $$
Question Number 42392 Answers: 1 Comments: 1
$${calculate}\:\int\:\:\:\frac{{lnx}}{{x}\:+{x}\left({lnx}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 42391 Answers: 1 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+{tanx}\right){dx} \\ $$
Question Number 42375 Answers: 1 Comments: 5
$$\mathrm{Find}\:\mathrm{value}\:\mathrm{of}\:\:\alpha\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{following}\:\mathrm{system} \\ $$$$\mathrm{has}\:\mathrm{infinite}\:\mathrm{many}\:\mathrm{solutions} \\ $$$$ \\ $$$${x}\:−\:\mathrm{3}{z}\:=\:−\mathrm{3} \\ $$$$−\mathrm{2}{x}\:−\:\alpha{y}\:+\:{z}\:=\:\mathrm{2} \\ $$$${x}\:+\:\mathrm{2}{y}\:+\:\alpha{z}\:=\:\mathrm{1} \\ $$
Question Number 42374 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:{arctan}\left({xt}^{\mathrm{2}} \right){cos}\left({t}^{\mathrm{2}} \right)\:{dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicite}\:{form}\:{of}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{explicite}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:{cos}\left({t}^{\mathrm{2}} \right)\:{arctan}\left({t}^{\mathrm{2}} \right){dt}\:\:\:{and}\:\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left({t}^{\mathrm{2}} \right){arctan}\left(\mathrm{2}{t}^{\mathrm{2}} \right){dt} \\ $$
Question Number 42370 Answers: 1 Comments: 1
Question Number 42367 Answers: 1 Comments: 0
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\sqrt[{{n}^{\mathrm{2}} +{n}}]{\:\begin{pmatrix}{{n}}\\{\mathrm{0}}\end{pmatrix}\begin{pmatrix}{{n}}\\{\mathrm{1}}\end{pmatrix}\begin{pmatrix}{{n}}\\{\mathrm{2}}\end{pmatrix}...\begin{pmatrix}{{n}}\\{{n}}\end{pmatrix}}\right) \\ $$
Question Number 42366 Answers: 1 Comments: 0
$$\underset{\mathrm{2005}} {\overset{\mathrm{2017}} {\int}}\:\frac{\left(\mathrm{ln}\:\mid{x}\:−\:\mathrm{2017}\mid\right)^{\mathrm{2017}} }{\left(\mathrm{ln}\:\mid{x}\:−\:\mathrm{2015}\mid\right)^{\mathrm{2017}} \:+\:\left(\mathrm{ln}\:\mid{x}\:−\:\mathrm{2017}\mid\right)^{\mathrm{2017}} }\:{dx} \\ $$
Question Number 42364 Answers: 0 Comments: 3
$$\int\:\:\frac{\mathrm{x}\:+\:\mathrm{sinx}\:−\:\mathrm{cosx}\:−\:\mathrm{1}}{\mathrm{x}\:+\:\mathrm{e}^{\mathrm{x}} \:+\:\mathrm{sinx}}\:\mathrm{dx} \\ $$
Question Number 42401 Answers: 0 Comments: 1
$${calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\: \\ $$
Question Number 42400 Answers: 0 Comments: 0
$${find}\:{lim}_{{n}\rightarrow+\infty} \:\frac{\mathrm{1}}{\sqrt{{n}}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\sqrt{{k}}\:+\sqrt{{n}−{k}}} \\ $$
Question Number 42358 Answers: 1 Comments: 0
$$\int_{\:−\mathrm{1}} ^{\:\mathrm{1}} \:\frac{\mathrm{x}^{\mathrm{2015}} }{\sqrt[{\mathrm{2015}}]{\mathrm{1}\:+\:\mathrm{x}}\:\:+\:\:\sqrt[{\mathrm{2015}}]{\mathrm{1}\:−\:\mathrm{x}}\:}\:\:\mathrm{dx} \\ $$
Question Number 42357 Answers: 1 Comments: 0
Question Number 42352 Answers: 1 Comments: 0
Question Number 42345 Answers: 1 Comments: 2
$$\mathrm{tan}\:\mathrm{15}°\:= \\ $$
Question Number 42336 Answers: 0 Comments: 0
$${find}\:\:\int\:{ln}\left({x}−{cosx}\right){dx}\:. \\ $$
Question Number 42332 Answers: 0 Comments: 0
Question Number 42331 Answers: 1 Comments: 0
Question Number 42330 Answers: 0 Comments: 0
$${A}\:{linear}\:{function}\:{f}\left({x}\right)={ax}\:+\:{b}\:{transforms}\:{X}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{5},\mathrm{9},\mathrm{11}\right\} \\ $$$${into}\:{Y},{so}\:{that}\:{f}\left(\mathrm{5}\right)=\mathrm{13}\:{and}\:{f}\left(\mathrm{1}\right)=\mathrm{5} \\ $$$${Calculate}\:{the}\:{mean}\:{and}\:{Variance}\:{of}\:{X}\:{and}\:{Y}. \\ $$
Pg 1564 Pg 1565 Pg 1566 Pg 1567 Pg 1568 Pg 1569 Pg 1570 Pg 1571 Pg 1572 Pg 1573
Terms of Service
Privacy Policy
Contact: info@tinkutara.com