Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1569

Question Number 46737    Answers: 2   Comments: 0

Question Number 46736    Answers: 2   Comments: 1

Question Number 46735    Answers: 0   Comments: 3

Question Number 46731    Answers: 1   Comments: 1

calculate Σ_((i,j)∈N) ((i^2 +j^2 )/2^(i+j) )

$${calculate}\:\sum_{\left({i},{j}\right)\in{N}} \:\:\frac{{i}^{\mathrm{2}} \:+{j}^{\mathrm{2}} }{\mathrm{2}^{{i}+{j}} } \\ $$

Question Number 46720    Answers: 0   Comments: 6

Question Number 46715    Answers: 0   Comments: 0

Given that the first two terms of a G.P is x and the last two terms is y. Find the common ratio.

$${Given}\:{that}\:{the}\:{first}\:{two}\:{terms}\:{of} \\ $$$${a}\:{G}.{P}\:{is}\:{x}\:{and}\:{the}\:{last}\:{two}\:{terms} \\ $$$${is}\:{y}.\:{Find}\:{the}\:{common}\:{ratio}. \\ $$

Question Number 46713    Answers: 1   Comments: 0

((x−1)/(x−2))−((x−2)/(x−3))=((x−5)/(x−6))−((x−6)/(x−7)) solve for x

$$\frac{{x}−\mathrm{1}}{{x}−\mathrm{2}}−\frac{{x}−\mathrm{2}}{{x}−\mathrm{3}}=\frac{{x}−\mathrm{5}}{{x}−\mathrm{6}}−\frac{{x}−\mathrm{6}}{{x}−\mathrm{7}} \\ $$$$\boldsymbol{{solve}}\:\boldsymbol{{for}}\:\boldsymbol{{x}} \\ $$

Question Number 46712    Answers: 0   Comments: 0

find S(z)=Σ_(n=1) ^∞ (z^n /n^2 ) with z complex and ∣z∣=1 .

$${find}\:{S}\left({z}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{z}^{{n}} }{{n}^{\mathrm{2}} }\:{with}\:{z}\:{complex}\:{and}\:\mid{z}\mid=\mathrm{1}\:. \\ $$

Question Number 46708    Answers: 0   Comments: 0

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Question Number 46705    Answers: 0   Comments: 0

calculate Σ_(k=0) ^n (1/(3k+1)) interms of H_n H_n =Σ_(k=1) ^n (1/k) .

$${calculate}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{3}{k}+\mathrm{1}}\:{interms}\:{of}\:{H}_{{n}} \\ $$$${H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:. \\ $$

Question Number 46697    Answers: 1   Comments: 0

Find the sum of the first nterms of the G.P 3+1+(1/3)+...and show that the sum cannot exceed (9/2) however great n may be.

$${Find}\:{the}\:{sum}\:{of}\:{the}\:{first}\:{nterms}\: \\ $$$${of}\:{the}\:{G}.{P}\:\mathrm{3}+\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+...{and}\:{show}\:{that} \\ $$$${the}\:{sum}\:{cannot}\:{exceed}\:\frac{\mathrm{9}}{\mathrm{2}}\:{however} \\ $$$${great}\:{n}\:{may}\:{be}. \\ $$

Question Number 46694    Answers: 1   Comments: 0

(y′′y−(y′)^2 )e^((y′)/y) =y^2 not sure if it′s possible to solve this at all...

$$\left({y}''{y}−\left({y}'\right)^{\mathrm{2}} \right)\mathrm{e}^{\frac{{y}'}{{y}}} ={y}^{\mathrm{2}} \\ $$$$\mathrm{not}\:\mathrm{sure}\:\mathrm{if}\:\mathrm{it}'\mathrm{s}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{at}\:\mathrm{all}... \\ $$

Question Number 46686    Answers: 2   Comments: 1

Question Number 46681    Answers: 1   Comments: 2

Question Number 46680    Answers: 1   Comments: 0

Question Number 46674    Answers: 1   Comments: 0

why slope is represented by m

$${why}\:{slope}\:{is}\:{represented}\:{by}\:{m} \\ $$

Question Number 46673    Answers: 0   Comments: 5

Question Number 46667    Answers: 0   Comments: 1

integrate ln (cosx+sinx)dx

$${integrate}\:\mathrm{ln}\:\left({cosx}+{sinx}\right){dx} \\ $$

Question Number 46657    Answers: 1   Comments: 0

integrte sin^(−1) x

$${integrte}\:\mathrm{sin}^{−\mathrm{1}} {x} \\ $$

Question Number 46652    Answers: 1   Comments: 0

2(1/2)y+5(1/2)y−2=3 could you help me

$$\mathrm{2}\frac{\mathrm{1}}{\mathrm{2}}\mathrm{y}+\mathrm{5}\frac{\mathrm{1}}{\mathrm{2}}\mathrm{y}−\mathrm{2}=\mathrm{3} \\ $$$$\mathrm{could}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me} \\ $$

Question Number 46651    Answers: 1   Comments: 0

3(8/(19))−2x=1(6/(19)) plz help me

$$\mathrm{3}\frac{\mathrm{8}}{\mathrm{19}}−\mathrm{2x}=\mathrm{1}\frac{\mathrm{6}}{\mathrm{19}} \\ $$$$\mathrm{plz}\:\mathrm{help}\:\mathrm{me} \\ $$

Question Number 46640    Answers: 0   Comments: 1

1≤n,m∈N. Prove that 3(m+n)+10ln (m!n!)≥6(√(mnH_m H_n )). (H_m =Σ_(i=1) ^m (1/i), H_n =Σ_(j=1) ^n (1/j))

$$\mathrm{1}\leqslant{n},{m}\in\mathbb{N}.\:{Prove}\:{that} \\ $$$$\mathrm{3}\left({m}+{n}\right)+\mathrm{10ln}\:\left({m}!{n}!\right)\geqslant\mathrm{6}\sqrt{{mnH}_{{m}} {H}_{{n}} }. \\ $$$$\left({H}_{{m}} =\underset{{i}=\mathrm{1}} {\overset{{m}} {\sum}}\frac{\mathrm{1}}{{i}},\:{H}_{{n}} =\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{j}}\right) \\ $$

Question Number 46639    Answers: 1   Comments: 2

Question Number 46641    Answers: 0   Comments: 1

Question Number 46637    Answers: 2   Comments: 3

Question Number 46636    Answers: 1   Comments: 0

tan θ=10tan60^°

$$\mathrm{tan}\:\theta=\mathrm{10tan60}^{°} \\ $$

  Pg 1564      Pg 1565      Pg 1566      Pg 1567      Pg 1568      Pg 1569      Pg 1570      Pg 1571      Pg 1572      Pg 1573   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com