Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1567

Question Number 50175    Answers: 1   Comments: 0

Question Number 50171    Answers: 0   Comments: 3

Sir l′m sorry l dont understand you

$$\mathrm{Sir}\:\mathrm{l}'\mathrm{m}\:\mathrm{sorry}\:\mathrm{l}\:\mathrm{dont}\:\mathrm{understand}\: \\ $$$$\mathrm{you} \\ $$

Question Number 50163    Answers: 2   Comments: 0

Question Number 50161    Answers: 1   Comments: 0

Find the function whose first derivative is 8−(5/(x^2 )^(1/3) ) the initial conditions f(8)=−20

$${Find}\:{the}\:{function}\:{whose}\:{first}\: \\ $$$${derivative}\:{is}\:\mathrm{8}−\frac{\mathrm{5}}{\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }}\:{the}\:{initial}\: \\ $$$${conditions}\:{f}\left(\mathrm{8}\right)=−\mathrm{20} \\ $$

Question Number 50158    Answers: 7   Comments: 1

Question Number 50156    Answers: 0   Comments: 1

Question Number 50155    Answers: 0   Comments: 1

plz help me sir

$$\mathrm{plz}\:\mathrm{help}\:\mathrm{me}\:\mathrm{sir} \\ $$

Question Number 50140    Answers: 5   Comments: 0

Solve the differential equation a)x(x+y)(dy/dx)=x^2 +xy−3y^2 b)y+xy^2 −x(dy/dx)=0 c [ x^2 (d^2 y/dx^(2 ) )−2x(dy/dx)+2(2x^2 +1)y=24x^3 given that (dy/dx)=6 ,(d^2 y/dx^2 )=0

$${Solve}\:{the}\:{differential} \\ $$$${equation} \\ $$$$\left.{a}\right){x}\left({x}+{y}\right)\frac{{dy}}{{dx}}={x}^{\mathrm{2}} +{xy}−\mathrm{3}{y}^{\mathrm{2}} \\ $$$$\left.{b}\right){y}+{xy}^{\mathrm{2}} −{x}\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$${c}\:\left[\:\:{x}^{\mathrm{2}} \frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}\:} }−\mathrm{2}{x}\frac{{dy}}{{dx}}+\mathrm{2}\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right){y}=\mathrm{24}{x}^{\mathrm{3}} \right. \\ $$$${given}\:{that}\:\frac{{dy}}{{dx}}=\mathrm{6}\:\:\:,\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{0} \\ $$

Question Number 50138    Answers: 0   Comments: 1

D

$$\mathrm{D} \\ $$

Question Number 50135    Answers: 2   Comments: 2

Question Number 50132    Answers: 0   Comments: 1

Let f be a positive function. Let I_1 =∫_(1−k) ^k x f{x(1−x} dx, I_2 =∫_(1−k) ^k x f{x(1−x} dx, where 2k−1>0. Then (I_1 /I_2 ) is

$$\mathrm{Let}\:{f}\:\:\mathrm{be}\:\mathrm{a}\:\mathrm{positive}\:\mathrm{function}.\:\mathrm{Let} \\ $$$${I}_{\mathrm{1}} =\underset{\mathrm{1}−{k}} {\overset{{k}} {\int}}{x}\:{f}\left\{{x}\left(\mathrm{1}−{x}\right\}\:{dx},\:\right. \\ $$$${I}_{\mathrm{2}} =\underset{\mathrm{1}−{k}} {\overset{{k}} {\int}}{x}\:{f}\left\{{x}\left(\mathrm{1}−{x}\right\}\:{dx},\:\right. \\ $$$$\mathrm{where}\:\mathrm{2}{k}−\mathrm{1}>\mathrm{0}.\:\mathrm{Then}\:\frac{{I}_{\mathrm{1}} }{{I}_{\mathrm{2}} }\:\:\mathrm{is} \\ $$

Question Number 50126    Answers: 0   Comments: 0

Question Number 50125    Answers: 0   Comments: 2

help me plz sir

$$\mathrm{help}\:\mathrm{me}\:\mathrm{plz}\:\mathrm{sir} \\ $$

Question Number 50101    Answers: 2   Comments: 4

Question Number 50093    Answers: 2   Comments: 1

Question Number 50089    Answers: 1   Comments: 2

lim_(x→8) ((x^2 −6x−16)/(∣x−8∣))

$$\underset{{x}\rightarrow\mathrm{8}} {\mathrm{lim}}\:\:\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{6x}−\mathrm{16}}{\mid\mathrm{x}−\mathrm{8}\mid} \\ $$

Question Number 50085    Answers: 0   Comments: 0

5^(x+2) −95^x =2^(x+9) +1132^x

$$\mathrm{5}^{{x}+\mathrm{2}} −\mathrm{95}^{{x}} =\mathrm{2}^{{x}+\mathrm{9}} +\mathrm{1132}^{{x}} \\ $$

Question Number 50084    Answers: 0   Comments: 0

could you help me sir?

$$\mathrm{could}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me}\:\mathrm{sir}? \\ $$

Question Number 50083    Answers: 0   Comments: 0

Question Number 50080    Answers: 1   Comments: 0

a) if f(x)=log(x+2), solve the equation: 2^(f(x−2)) ×2^(f(2x+2)) =4^(logf(x))

$$\left.{a}\right)\:{if}\:{f}\left({x}\right)={log}\left({x}+\mathrm{2}\right),\:{solve}\:{the}\:{equation}: \\ $$$$\mathrm{2}^{{f}\left({x}−\mathrm{2}\right)} ×\mathrm{2}^{{f}\left(\mathrm{2}{x}+\mathrm{2}\right)} =\mathrm{4}^{{logf}\left({x}\right)} \\ $$

Question Number 50065    Answers: 3   Comments: 0

Question Number 50064    Answers: 3   Comments: 0

if y^x =x^y and y and x are both not equal to 0 and l find the value of x and y

$$\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{y}}^{\boldsymbol{\mathrm{x}}} =\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{y}}} \: \\ $$$$\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{y}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{both}}\:\boldsymbol{\mathrm{not}} \\ $$$$\boldsymbol{\mathrm{equal}}\:\boldsymbol{\mathrm{to}}\:\mathrm{0}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{l}} \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{y}} \\ $$

Question Number 50052    Answers: 5   Comments: 1

Question Number 50047    Answers: 1   Comments: 0

Question Number 50048    Answers: 3   Comments: 4

Question Number 50017    Answers: 0   Comments: 4

CONGRATULATIONS ! Tinkutara- our forum on having above 50000 question posts.

$$\mathcal{CONGRATULATIONS}\:! \\ $$$${Tinkutara}-\:{our}\:{forum}\:{on} \\ $$$${having}\:{above}\:\mathrm{50000}\:{question}\:{posts}. \\ $$

  Pg 1562      Pg 1563      Pg 1564      Pg 1565      Pg 1566      Pg 1567      Pg 1568      Pg 1569      Pg 1570      Pg 1571   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com