Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1566

Question Number 49748    Answers: 1   Comments: 0

Question Number 49661    Answers: 1   Comments: 2

calculateA_n =(1/(2i)) ∫_0 ^1 {(1+ix)^n −(1−ix)^n }dx

$${calculateA}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}{i}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left\{\left(\mathrm{1}+{ix}\right)^{{n}} −\left(\mathrm{1}−{ix}\right)^{{n}} \right\}{dx} \\ $$

Question Number 49660    Answers: 2   Comments: 1

Question Number 49647    Answers: 1   Comments: 3

let p(x) =x^(2n) −x^n +1 1) determine the roots of p(x) 2) factorize inside C[x] the polynom p(x) . 3)solve p(x)=0 and p(x) =2

$${let}\:{p}\left({x}\right)\:={x}^{\mathrm{2}{n}} \:−{x}^{{n}} \:+\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{inside}\:{C}\left[{x}\right]\:{the}\:{polynom}\:{p}\left({x}\right)\:. \\ $$$$\left.\mathrm{3}\right){solve}\:{p}\left({x}\right)=\mathrm{0}\:\:{and}\:{p}\left({x}\right)\:=\mathrm{2} \\ $$

Question Number 49646    Answers: 0   Comments: 0

calculate ∫∫_D (x^2 −y^2 )(√(x^2 +y^2 ))dxdy with D ={(x,y)∈R^2 / −1≤x≤1 and 0≤y≤2 }

$${calculate}\:\int\int_{{D}} \left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }{dxdy}\:{with} \\ $$$${D}\:=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\:−\mathrm{1}\leqslant{x}\leqslant\mathrm{1}\:{and}\:\mathrm{0}\leqslant{y}\leqslant\mathrm{2}\:\right\} \\ $$

Question Number 49645    Answers: 1   Comments: 0

calculate ∫∫_C ∣x+y∣dxdy with C=[−1,1]×[−1,1]

$${calculate}\:\int\int_{{C}} \:\mid{x}+{y}\mid{dxdy}\:\:{with}\:{C}=\left[−\mathrm{1},\mathrm{1}\right]×\left[−\mathrm{1},\mathrm{1}\right] \\ $$

Question Number 70360    Answers: 1   Comments: 0

l_(n→+∞) im (((√(n + 1 ))− n)/((√(n + 1)) + n)) = ?

$$\underset{{n}\rightarrow+\infty} {\mathrm{l}im}\:\:\:\:\frac{\sqrt{{n}\:+\:\mathrm{1}\:}−\:{n}}{\sqrt{{n}\:+\:\mathrm{1}}\:+\:{n}}\:\:=\:\:? \\ $$

Question Number 49642    Answers: 1   Comments: 0

if a+b =s and a^3 +b^3 =t find a^2 +b^2 and a^4 +b^4 interms of s and t .

$${if}\:\:{a}+{b}\:={s}\:{and}\:{a}^{\mathrm{3}} \:+{b}^{\mathrm{3}} \:={t}\:\:{find}\:{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} \:\:{and}\:{a}^{\mathrm{4}} \:+{b}^{\mathrm{4}} \:{interms}\:{of}\:{s}\:{and}\:{t}\:. \\ $$

Question Number 49640    Answers: 1   Comments: 2

if x ∈[p,(√(p^2 +2))] calculate [x]

$${if}\:{x}\:\in\left[{p},\sqrt{{p}^{\mathrm{2}} \:+\mathrm{2}}\right]\:\:{calculate}\:\left[{x}\right] \\ $$

Question Number 49639    Answers: 1   Comments: 1

find a relation betwen [x]^2 and [−x]^2

$${find}\:{a}\:{relation}\:{betwen}\:\left[{x}\right]^{\mathrm{2}} \:{and}\:\left[−{x}\right]^{\mathrm{2}} \\ $$

Question Number 49638    Answers: 1   Comments: 0

let a>2 and f(a) =∫_(−(1/a)) ^(1/a) ((x^2 dx)/((√(1+x^2 ))+(√(1−x^2 )))) 1) calculate f(a) interms of a 2) calculate f^′ (a) .

$${let}\:{a}>\mathrm{2}\:{and}\:{f}\left({a}\right)\:=\int_{−\frac{\mathrm{1}}{{a}}} ^{\frac{\mathrm{1}}{{a}}} \:\:\:\frac{{x}^{\mathrm{2}} {dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({a}\right)\:{interms}\:{of}\:{a} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({a}\right)\:. \\ $$

Question Number 49637    Answers: 1   Comments: 0

Question Number 49636    Answers: 1   Comments: 2

1) calculate A_n =∫_0 ^∞ e^(−n[x]) sin(x)dx with n integr and n≥1 2) find nature of Σ_(n=1) ^∞ A_n

$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{n}\left[{x}\right]} {sin}\left({x}\right){dx}\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{A}_{{n}} \\ $$

Question Number 49635    Answers: 1   Comments: 1

1)find f(x) =∫_0 ^(π/4) ((sint)/(2+x cos(2t)))dt 2) find g(x) =∫_0 ^(π/4) ((sint sin(2t)/((2+x cos(2t))^2 ))dx 3) find the value of ∫_0 ^(π/4) ((sint)/(2+3 cos(2t)))dt and ∫_0 ^(π/4) ((sin(t)sin(2t))/((2+3cos(2t))^2 ))dt

$$\left.\mathrm{1}\right){find}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{sint}}{\mathrm{2}+{x}\:{cos}\left(\mathrm{2}{t}\right)}{dt} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{sint}\:{sin}\left(\mathrm{2}{t}\right.}{\left(\mathrm{2}+{x}\:{cos}\left(\mathrm{2}{t}\right)\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{sint}}{\mathrm{2}+\mathrm{3}\:{cos}\left(\mathrm{2}{t}\right)}{dt}\:\:{and}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{sin}\left({t}\right){sin}\left(\mathrm{2}{t}\right)}{\left(\mathrm{2}+\mathrm{3}{cos}\left(\mathrm{2}{t}\right)\right)^{\mathrm{2}} }{dt} \\ $$

Question Number 49621    Answers: 0   Comments: 0

Question Number 49605    Answers: 1   Comments: 3

Question Number 49604    Answers: 2   Comments: 0

Show that: (((a + b)^2 )/2) ≤ a^2 + b^2

$$\mathrm{Show}\:\mathrm{that}:\:\:\:\:\:\:\:\:\:\:\:\frac{\left(\mathrm{a}\:+\:\mathrm{b}\right)^{\mathrm{2}} }{\mathrm{2}}\:\:\leqslant\:\:\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \\ $$

Question Number 49602    Answers: 0   Comments: 0

∅=0

$$\varnothing=\mathrm{0} \\ $$

Question Number 71170    Answers: 1   Comments: 1

Question Number 49594    Answers: 0   Comments: 1

How can we insert images in the editor?

$$\:\:\:\:{How}\:{can}\:{we}\:{insert}\:{images}\:{in}\:{the}\:{editor}? \\ $$

Question Number 49651    Answers: 0   Comments: 3

Question Number 49570    Answers: 1   Comments: 0

Eliminate t from this equation: (1) x = 1 + t, y = 1 + (1/t) (2) x = 3 + t^3 , y = 2 + (1/t)

$$\mathrm{Eliminate}\:\:\boldsymbol{\mathrm{t}}\:\:\mathrm{from}\:\mathrm{this}\:\mathrm{equation}:\:\:\left(\mathrm{1}\right)\:\:\:\mathrm{x}\:=\:\mathrm{1}\:+\:\mathrm{t},\:\:\:\mathrm{y}\:=\:\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{t}} \\ $$$$\left(\mathrm{2}\right)\:\:\mathrm{x}\:=\:\mathrm{3}\:+\:\mathrm{t}^{\mathrm{3}} \:,\:\:\:\:\:\mathrm{y}\:=\:\mathrm{2}\:+\:\frac{\mathrm{1}}{\mathrm{t}} \\ $$

Question Number 51422    Answers: 2   Comments: 1

Question Number 49559    Answers: 2   Comments: 1

Question Number 49555    Answers: 0   Comments: 0

Find 4 plz help me sir

$$\mathrm{Find}\:\mathrm{4}\:\: \\ $$$$\mathrm{plz}\:\mathrm{help}\:\mathrm{me}\:\mathrm{sir} \\ $$

Question Number 49554    Answers: 0   Comments: 0

  Pg 1561      Pg 1562      Pg 1563      Pg 1564      Pg 1565      Pg 1566      Pg 1567      Pg 1568      Pg 1569      Pg 1570   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com