Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1566
Question Number 54502 Answers: 0 Comments: 5
$${In}\:\bigtriangleup{ABC}\:\mathrm{cos}\:{A}+\mathrm{cos}\:{B}+\mathrm{cos}\:{C}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${prove}\:{that}\:{trianle}\:{is}\:{equilateral} \\ $$
Question Number 54480 Answers: 2 Comments: 0
$$\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{tan}\:\alpha\:+\mathrm{tan}\:\left(\alpha+\frac{\mathrm{2}\overset{−} {\Lambda}}{\mathrm{5}}\right)\:+\mathrm{tan}\:\left(\alpha+\frac{\mathrm{4}\overset{−} {\Lambda}}{\mathrm{5}}\right)\:+\mathrm{tan}\:\left(\alpha+\frac{\mathrm{6}\overset{−} {\Lambda}}{\mathrm{5}}\right)\:+\:\mathrm{tan}\:\left(\alpha+\frac{\mathrm{8}\overset{−} {\Lambda}}{\mathrm{5}}\right)\:=\:\mathrm{5tan}\:\mathrm{5}\alpha \\ $$
Question Number 54481 Answers: 1 Comments: 1
Question Number 54473 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}:\:\:\:\:\mathrm{2}^{\mathrm{2x}\:−\:\mathrm{4}} \:\:=\:\:\mathrm{x}^{\mathrm{2}} \\ $$
Question Number 54472 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{A},\:\mathrm{B},\:\mathrm{C}\:\:\mathrm{are}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle},\:\:\mathrm{show}\:\mathrm{that} \\ $$$$\:\:\:\mathrm{tanA}\:+\:\mathrm{tanB}\:+\:\mathrm{tanC}\:\:=\:\:\mathrm{tanA}\:\mathrm{tanB}\:\mathrm{tanC} \\ $$
Question Number 54468 Answers: 0 Comments: 0
$$\mathrm{First}\:\mathrm{three}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{given} \\ $$$$\mathrm{by}\:\:{a}_{\mathrm{1}} =\mathrm{1},\:{a}_{{n}} ={a}_{{n}−\mathrm{1}} +\mathrm{2}{a}_{{n}−\mathrm{2}} \:\mathrm{are}\:\mathrm{in} \\ $$
Question Number 54466 Answers: 1 Comments: 1
$$\frac{\mathrm{6}+\sqrt{\left(\mathrm{6}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}\right)\left(\mathrm{10}\right)}}{\mathrm{2}} \\ $$$$ \\ $$
Question Number 54462 Answers: 1 Comments: 1
Question Number 54460 Answers: 1 Comments: 0
$${Solve}\:\frac{{dy}}{{dx}}+\mathrm{3}{x}=\mathrm{5} \\ $$
Question Number 54457 Answers: 0 Comments: 0
Question Number 54447 Answers: 2 Comments: 1
Question Number 54487 Answers: 0 Comments: 0
Question Number 54422 Answers: 1 Comments: 4
$$\mathrm{The}\:\mathrm{median}\:{AD}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:{ABC} \\ $$$$\mathrm{is}\:\mathrm{bisected}\:\mathrm{at}\:{E},\:{BE}\:\mathrm{meets}\:{AC}\:\mathrm{in}\:{F}, \\ $$$$\mathrm{then}\:{AF}\::\:{AC}\:= \\ $$
Question Number 54421 Answers: 2 Comments: 2
$$\mathrm{If}\:\mathrm{the}\:\mathrm{vector}\:\boldsymbol{\mathrm{c}},\:\boldsymbol{\mathrm{a}}={x}\boldsymbol{\mathrm{i}}+{y}\boldsymbol{\mathrm{j}}+{z}\boldsymbol{\mathrm{k}}\:\mathrm{and}\:\boldsymbol{\mathrm{b}}=\boldsymbol{\mathrm{j}} \\ $$$$\mathrm{are}\:\mathrm{such}\:\mathrm{that}\:\boldsymbol{\mathrm{a}},\:\boldsymbol{\mathrm{c}}\:\mathrm{and}\:\boldsymbol{\mathrm{b}}\:\mathrm{form}\:\mathrm{a}\:\mathrm{right} \\ $$$$\mathrm{handed}\:\mathrm{system},\:\mathrm{then}\:\boldsymbol{\mathrm{c}}\:\mathrm{is} \\ $$
Question Number 54420 Answers: 1 Comments: 0
$$\mathrm{Let}\:\boldsymbol{\mathrm{a}}=\boldsymbol{\mathrm{i}}+\boldsymbol{\mathrm{j}}\:\mathrm{and}\:\boldsymbol{\mathrm{b}}=\mathrm{2}\boldsymbol{\mathrm{i}}−\boldsymbol{\mathrm{k}},\:\mathrm{the}\:\mathrm{point}\:\mathrm{of} \\ $$$$\mathrm{intersection}\:\mathrm{of}\:\mathrm{the}\:\mathrm{lines}\:\boldsymbol{\mathrm{r}}×\boldsymbol{\mathrm{a}}=\boldsymbol{\mathrm{b}}×\boldsymbol{\mathrm{a}} \\ $$$$\mathrm{and}\:\boldsymbol{\mathrm{r}}×\boldsymbol{\mathrm{b}}=\boldsymbol{\mathrm{a}}×\boldsymbol{\mathrm{b}}\:\mathrm{is} \\ $$
Question Number 54419 Answers: 1 Comments: 0
$$\mathrm{If}\:\boldsymbol{\mathrm{a}}=\boldsymbol{\mathrm{i}}+\boldsymbol{\mathrm{j}}−\boldsymbol{\mathrm{k}},\:\boldsymbol{\mathrm{b}}=\boldsymbol{\mathrm{i}}−\boldsymbol{\mathrm{j}}+\boldsymbol{\mathrm{k}}\:\mathrm{and}\:\boldsymbol{\mathrm{c}}\:\mathrm{is}\:\mathrm{a}\:\mathrm{unit} \\ $$$$\mathrm{vector}\:\bot\:\mathrm{to}\:\mathrm{the}\:\mathrm{vector}\:\boldsymbol{\mathrm{a}}\:\mathrm{and}\:\mathrm{coplanar} \\ $$$$\mathrm{with}\:\boldsymbol{\mathrm{a}}\:\mathrm{and}\:\boldsymbol{\mathrm{b}},\:\mathrm{then}\:\mathrm{a}\:\mathrm{unit}\:\mathrm{vector}\:\boldsymbol{\mathrm{d}}\:\bot\:\mathrm{to} \\ $$$$\mathrm{both}\:\boldsymbol{\mathrm{a}}\:\mathrm{and}\:\boldsymbol{\mathrm{c}}\:\mathrm{is} \\ $$
Question Number 54418 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{projection}\:\mathrm{of}\:\mathrm{the}\:\mathrm{vector}\:\boldsymbol{\mathrm{a}}=\mathrm{4}\boldsymbol{\mathrm{i}}−\mathrm{3}\boldsymbol{\mathrm{j}}+\mathrm{2}\boldsymbol{\mathrm{k}} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{axis}\:\mathrm{making}\:\mathrm{equal}\:\mathrm{acute}\:\mathrm{angles} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{coordinate}\:\mathrm{axes}\:\mathrm{is} \\ $$
Question Number 54417 Answers: 0 Comments: 0
$$\mathrm{A}\:\mathrm{force}\:\mathrm{of}\:\mathrm{39}\:\mathrm{kg}\:\mathrm{weight}\:\mathrm{is}\:\mathrm{acting}\:\mathrm{at}\:\mathrm{a} \\ $$$$\mathrm{point}\:{P}\left(−\mathrm{4},\:\mathrm{2},\:\mathrm{5}\right)\:\mathrm{in}\:\mathrm{the}\:\mathrm{direction}\: \\ $$$$\mathrm{12}\boldsymbol{\mathrm{i}}−\mathrm{4}\boldsymbol{\mathrm{j}}−\mathrm{3}\boldsymbol{\mathrm{k}}.\:\mathrm{The}\:\mathrm{moment}\:\mathrm{of}\:\mathrm{this}\:\mathrm{force} \\ $$$$\mathrm{about}\:\mathrm{a}\:\mathrm{line}\:\mathrm{through}\:\mathrm{the}\:\mathrm{origin}\:\mathrm{having} \\ $$$$\mathrm{the}\:\mathrm{direction}\:\mathrm{of}\:\mathrm{2}\boldsymbol{\mathrm{i}}−\mathrm{2}\boldsymbol{\mathrm{j}}+\boldsymbol{\mathrm{k}}\:\mathrm{is} \\ $$
Question Number 54416 Answers: 0 Comments: 0
Question Number 54413 Answers: 0 Comments: 8
Question Number 54409 Answers: 2 Comments: 1
$${li}\underset{{x}\rightarrow\infty} {{m}}\sqrt{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)}−{x}=? \\ $$$${pls}\:{solve}\:{this} \\ $$$$ \\ $$
Question Number 54396 Answers: 1 Comments: 1
Question Number 54388 Answers: 0 Comments: 0
Question Number 54378 Answers: 0 Comments: 3
$$\underset{\pi/\mathrm{3}} {\overset{\mathrm{3}\pi/\mathrm{2}} {\int}}\:\:\left[\:\mathrm{2}\:\mathrm{cos}\:{x}\:\right]\:{dx}\:= \\ $$
Question Number 54377 Answers: 0 Comments: 0
Question Number 54376 Answers: 3 Comments: 3
$$\left.\mathrm{1}\right)\:{calculate}\:\:{f}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+{ax}\:\:+\mathrm{1}} \\ $$$${with}\:\:\:\mid{a}\mid<\mathrm{2} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\frac{{x}}{\left({x}^{\mathrm{2}} \:+{ax}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){find}\:{values}\:{of}\:{integrals}\:\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{x}\:+\mathrm{1}} \\ $$$${and}\:\int_{−\infty} ^{+\infty} \:\frac{{x}}{\left({x}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{x}\:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{A}\left(\theta\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{2}{cos}\theta\:+\mathrm{1}} \\ $$$$\theta\:{is}\:{a}\:{given}\:{real}. \\ $$
Pg 1561 Pg 1562 Pg 1563 Pg 1564 Pg 1565 Pg 1566 Pg 1567 Pg 1568 Pg 1569 Pg 1570
Terms of Service
Privacy Policy
Contact: info@tinkutara.com