Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1565

Question Number 47120    Answers: 0   Comments: 0

calculate ∫_0 ^∞ e^(−t) ln(1+2t^2 )dt

$${calculate}\:\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {ln}\left(\mathrm{1}+\mathrm{2}{t}^{\mathrm{2}} \right){dt} \\ $$

Question Number 47119    Answers: 0   Comments: 1

let u_n =∫_(−∞) ^∞ e^(−nx^2 +x) dx 1)calculate u_n 2)find Σ_n u_n

$${let}\:{u}_{{n}} =\int_{−\infty} ^{\infty} \:{e}^{−{nx}^{\mathrm{2}} +{x}} {dx} \\ $$$$\left.\mathrm{1}\right){calculate}\:{u}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:\sum_{{n}} \:{u}_{{n}} \\ $$

Question Number 47114    Answers: 0   Comments: 1

calculate ∫_0 ^1 (((x^2 −1)ln(x))/((x^2 +2x−1)(x^2 −2x−1)))dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left({x}^{\mathrm{2}} −\mathrm{1}\right){ln}\left({x}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{2}{x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{1}\right)}{dx} \\ $$

Question Number 47113    Answers: 0   Comments: 4

Question Number 47112    Answers: 1   Comments: 3

calculate ∫_0 ^(π/2) ln(cosx+sinx)ex

$${calculate}\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cosx}+{sinx}\right){ex} \\ $$

Question Number 47111    Answers: 0   Comments: 4

Question Number 47145    Answers: 1   Comments: 1

Question Number 47101    Answers: 1   Comments: 1

Question Number 47090    Answers: 0   Comments: 0

Avery large field of charge has density of 5μC/m^2 . Determine the electric field intensity at a distance of 25cm.Taking medium as vacuum

$$\mathrm{Avery}\:\mathrm{large}\:\mathrm{field}\:\mathrm{of}\:\mathrm{charge}\:\mathrm{has}\:\mathrm{density} \\ $$$$\mathrm{of}\:\mathrm{5}\mu\mathrm{C}/\mathrm{m}^{\mathrm{2}} .\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{electric}\:\mathrm{field} \\ $$$$\mathrm{intensity}\:\mathrm{at}\:\mathrm{a}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{25cm}.\mathrm{Taking} \\ $$$$\mathrm{medium}\:\mathrm{as}\:\mathrm{vacuum} \\ $$

Question Number 47088    Answers: 1   Comments: 0

Question Number 47087    Answers: 0   Comments: 0

A charge of 1500μC is distributed over a very large sheet having surface area of 300m^2 . calculate the electric field intensity at a distance of 25cm. please help

$$\mathrm{A}\:\mathrm{charge}\:\mathrm{of}\:\mathrm{1500}\mu\mathrm{C}\:\mathrm{is}\:\mathrm{distributed} \\ $$$$\mathrm{over}\:\mathrm{a}\:\mathrm{very}\:\mathrm{large}\:\mathrm{sheet}\:\mathrm{having}\:\mathrm{surface} \\ $$$$\mathrm{area}\:\mathrm{of}\:\mathrm{300m}^{\mathrm{2}} . \\ $$$$\mathrm{calculate}\:\mathrm{the}\:\mathrm{electric}\:\mathrm{field}\:\mathrm{intensity} \\ $$$$\mathrm{at}\:\mathrm{a}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{25cm}. \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{help} \\ $$

Question Number 47071    Answers: 0   Comments: 0

prove that union of two subgroups of a group is a subgroup iff one is contained in other

$${prove}\:{that}\:{union}\:{of}\:{two}\:{subgroups}\:{of}\:{a}\:{group}\:{is}\:{a}\:{subgroup}\:{iff}\:{one}\:{is}\:{contained}\:{in}\:{other} \\ $$

Question Number 47070    Answers: 0   Comments: 2

Question Number 47068    Answers: 1   Comments: 0

(a−b)^2

$$\left(\mathrm{a}−\mathrm{b}\right)^{\mathrm{2}} \\ $$

Question Number 47065    Answers: 0   Comments: 0

let v_n (a)= ∫_(1/n) ^n (1−(a/x^2 ))arctan(1+(a/x))dx with a>0 1) determine a explicit form of v_n (a) 2) study the convergence of Σ_n v_n (a) 3)calculate v_n (1) and Σ_n v_n (1) .

$${let}\:{v}_{{n}} \left({a}\right)=\:\int_{\frac{\mathrm{1}}{{n}}} ^{{n}} \:\:\left(\mathrm{1}−\frac{{a}}{{x}^{\mathrm{2}} }\right){arctan}\left(\mathrm{1}+\frac{{a}}{{x}}\right){dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{v}_{{n}} \left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{convergence}\:{of}\:\sum_{{n}} \:{v}_{{n}} \left({a}\right) \\ $$$$\left.\mathrm{3}\right){calculate}\:{v}_{{n}} \left(\mathrm{1}\right)\:\:{and}\:\sum_{{n}} {v}_{{n}} \left(\mathrm{1}\right)\:. \\ $$

Question Number 47064    Answers: 0   Comments: 1

1)calculate u_n =∫_0 ^∞ ((sin(nx))/(sh(2x)))dx with n integr natural 2) calculate Σ_(n=0) ^∞ u_n .

$$\left.\mathrm{1}\right){calculate}\:\:{u}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({nx}\right)}{{sh}\left(\mathrm{2}{x}\right)}{dx}\:\:{with}\:\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}_{{n}} \:. \\ $$

Question Number 47063    Answers: 0   Comments: 0

1)calculate u_n = ∫_0 ^∞ e^(−nx) ln(1+x)dx with n integr natural 2) calculate lim_(n→+∞) u_n 3) find Σ_(n=0) ^∞ u_n

$$\left.\mathrm{1}\right){calculate}\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{nx}} {ln}\left(\mathrm{1}+{x}\right){dx}\:\:{with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{lim}_{{n}\rightarrow+\infty} {u}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}_{{n}} \\ $$

Question Number 47062    Answers: 1   Comments: 0

find ∫ (√(((√x)−1)/((√x)+1)))dx

$${find}\:\int\:\:\:\sqrt{\frac{\sqrt{{x}}−\mathrm{1}}{\sqrt{{x}}+\mathrm{1}}}{dx} \\ $$

Question Number 47061    Answers: 0   Comments: 0

let f(a) =∫ (√(1+atan(x)))dx 1) find a explicit form of f(a) 2) calculate ∫ (√(1+2tan(x)))dx .

$${let}\:\:{f}\left({a}\right)\:=\int\:\:\:\sqrt{\mathrm{1}+{atan}\left({x}\right)}{dx} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int\:\:\sqrt{\mathrm{1}+\mathrm{2}{tan}\left({x}\right)}{dx}\:. \\ $$

Question Number 47060    Answers: 0   Comments: 0

let f(x) = ∫_0 ^1 (dt/(2+ch(xt))) 1) find a explicit form of f(x) 2) calculate g(x)=∫_0 ^1 ((tsh(xt))/((2+ch(xt))^2 ))dt 3) find the value of ∫_0 ^1 (dt/(2+ch(3t))) and ∫_0 ^1 ((tsh(3t))/((2+ch(3t))^2 ))dt 4) calculate u_n =∫_0 ^1 (dt/(2+ch(nt))) with n natural integr and study the convergence of the serie Σ (u_n /n) .

$${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dt}}{\mathrm{2}+{ch}\left({xt}\right)} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{tsh}\left({xt}\right)}{\left(\mathrm{2}+{ch}\left({xt}\right)\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\mathrm{2}+{ch}\left(\mathrm{3}{t}\right)}\:{and}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{tsh}\left(\mathrm{3}{t}\right)}{\left(\mathrm{2}+{ch}\left(\mathrm{3}{t}\right)\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{u}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dt}}{\mathrm{2}+{ch}\left({nt}\right)}\:{with}\:{n}\:{natural}\:{integr}\:\:{and}\:{study}\:{the}\:{convergence} \\ $$$${of}\:{the}\:{serie}\:\Sigma\:\frac{{u}_{{n}} }{{n}}\:. \\ $$

Question Number 47059    Answers: 2   Comments: 1

find ∫ (dx/(1+cos x +cos(2x)))

$$\:{find}\:\int\:\:\frac{{dx}}{\mathrm{1}+{cos}\:{x}\:+{cos}\left(\mathrm{2}{x}\right)} \\ $$

Question Number 47058    Answers: 1   Comments: 0

calculate ∫_0 ^1 ((1+x^3 )/(1+x^4 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}+{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$

Question Number 47043    Answers: 0   Comments: 0

if p is a prime number and (a,p)= then prove that a^(p−1) ≡ 1(mod p)

$${if}\:{p}\:{is}\:{a}\:{prime}\:{number}\:{and}\:\left({a},{p}\right)=\:{then}\:{prove}\:{that}\:{a}^{{p}−\mathrm{1}} \equiv\:\mathrm{1}\left({mod}\:{p}\right) \\ $$

Question Number 47036    Answers: 0   Comments: 0

let m,n denotes any two possitive,relative prime integers, then prove that φ(mn)=φ(m)∙φ(n)

$${let}\:{m},{n}\:{denotes}\:{any}\:{two}\:{possitive},{relative}\:{prime}\:{integers},\:{then}\:{prove}\:{that}\:\phi\left({mn}\right)=\phi\left({m}\right)\centerdot\phi\left({n}\right) \\ $$

Question Number 47035    Answers: 1   Comments: 1

(d^2 +a^2 )y=tan ax by the method of variation of parameters

$$\left({d}^{\mathrm{2}} +{a}^{\mathrm{2}} \right){y}={tan}\:{ax}\:{by}\:{the}\:{method}\:{of}\:{variation}\:{of}\:{parameters} \\ $$

Question Number 47034    Answers: 1   Comments: 0

find angel between spheres x^2 +y^2 +z^2 =29, x^2 +y^2 +z^2 +4x−6y−8z−47=0 (4,−3,2)

$${find}\:{angel}\:{between}\:{spheres}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{29},\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{6}{y}−\mathrm{8}{z}−\mathrm{47}=\mathrm{0}\:\:\left(\mathrm{4},−\mathrm{3},\mathrm{2}\right) \\ $$

  Pg 1560      Pg 1561      Pg 1562      Pg 1563      Pg 1564      Pg 1565      Pg 1566      Pg 1567      Pg 1568      Pg 1569   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com