Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1565

Question Number 45885    Answers: 1   Comments: 3

Question Number 45879    Answers: 0   Comments: 0

2^x =log_(0.5) x find x−?

$$\mathrm{2}^{\boldsymbol{{x}}} =\boldsymbol{{log}}_{\mathrm{0}.\mathrm{5}} \boldsymbol{{x}} \\ $$$$\boldsymbol{{find}}\:\:\boldsymbol{{x}}−? \\ $$

Question Number 45876    Answers: 1   Comments: 0

Question Number 45856    Answers: 0   Comments: 1

Prove that the length of the perpendicular from the origin to the plane passing through point a^→ and containing the line r^→ =b^→ +λc^→ is (([a^→ b^→ c^→ ])/(∣b^→ ×c^→ +c^→ ×a^→ ∣)) . Here [a^→ b^→ c^→ ] = scalar triple product.

$${Prove}\:{that}\:{the}\:{length}\:{of}\:{the}\:{perpendicular} \\ $$$${from}\:{the}\:{origin}\:{to}\:{the}\:{plane}\:{passing} \\ $$$${through}\:{point}\:\overset{\rightarrow} {{a}}\:{and}\:{containing}\:{the} \\ $$$${line}\:\overset{\rightarrow} {{r}}=\overset{\rightarrow} {{b}}+\lambda\overset{\rightarrow} {{c}}\:{is}\:\frac{\left[\overset{\rightarrow} {{a}}\:\:\overset{\rightarrow} {{b}}\:\:\overset{\rightarrow} {{c}}\:\right]}{\mid\overset{\rightarrow} {{b}}×\overset{\rightarrow} {{c}}\:+\overset{\rightarrow} {{c}}×\overset{\rightarrow} {{a}}\mid}\:. \\ $$$${Here}\:\left[\overset{\rightarrow} {{a}}\:\overset{\rightarrow} {{b}}\:\overset{\rightarrow} {{c}}\right]\:=\:{scalar}\:{triple}\:{product}. \\ $$

Question Number 45846    Answers: 1   Comments: 1

ph=−log[H]

$${ph}=−{log}\left[{H}\right] \\ $$

Question Number 45844    Answers: 1   Comments: 1

If y=((sec^2 θ−tan θ)/(sec^2 θ+tan θ)) , then

$$\mathrm{If}\:\:{y}=\frac{\mathrm{sec}^{\mathrm{2}} \theta−\mathrm{tan}\:\theta}{\mathrm{sec}^{\mathrm{2}} \theta+\mathrm{tan}\:\theta}\:,\:\mathrm{then} \\ $$

Question Number 45842    Answers: 1   Comments: 8

Question Number 45841    Answers: 1   Comments: 2

∫_0 ^( ∞) e^(−ix^2 ) dx=?? plz..

$$\int_{\mathrm{0}} ^{\:\infty} \:{e}^{−{ix}^{\mathrm{2}} } {dx}=?? \\ $$$$\mathrm{plz}.. \\ $$

Question Number 45840    Answers: 0   Comments: 0

a≦7⇒P(!∃x_a )=0, b≦9⇒Q(!∃y_b )=0 for a, b∈N And A⊋A′: A={(x, y)∣P(x)∙Q(y)=0}=A′, B_(∈A) ={(x, y)∈A∣x=y} Then ∀t∈N: ∣B∣=n(t)=f(P(x), Q(y)), also only t can be in [N, M]. find M. :(

$${a}\leqq\mathrm{7}\Rightarrow\mathrm{P}\left(!\exists{x}_{{a}} \right)=\mathrm{0}, \\ $$$${b}\leqq\mathrm{9}\Rightarrow\mathrm{Q}\left(!\exists{y}_{{b}} \right)=\mathrm{0}\:\mathrm{for}\:{a},\:{b}\in\mathbb{N} \\ $$$$\mathrm{And}\:{A}\supsetneq{A}':\:{A}=\left\{\left({x},\:{y}\right)\mid\mathrm{P}\left({x}\right)\centerdot\mathrm{Q}\left({y}\right)=\mathrm{0}\right\}={A}', \\ $$$${B}_{\in{A}} =\left\{\left({x},\:{y}\right)\in{A}\mid{x}={y}\right\} \\ $$$$\mathrm{Then}\:\forall{t}\in\mathbb{N}:\:\mid{B}\mid={n}\left({t}\right)={f}\left(\mathrm{P}\left({x}\right),\:\mathrm{Q}\left({y}\right)\right), \\ $$$$\mathrm{also}\:\mathrm{only}\:{t}\:\mathrm{can}\:\mathrm{be}\:\mathrm{in}\:\left[{N},\:{M}\right]. \\ $$$$\mathrm{find}\:{M}. \\ $$$$:\left(\right. \\ $$

Question Number 45830    Answers: 0   Comments: 1

Given A= sin^2 θ + cos^4 θ, then for all real θ

$$\mathrm{Given}\:{A}=\:\mathrm{sin}^{\mathrm{2}} \theta\:+\:\mathrm{cos}^{\mathrm{4}} \theta,\:\mathrm{then}\:\mathrm{for}\:\mathrm{all} \\ $$$$\mathrm{real}\:\theta \\ $$

Question Number 45829    Answers: 0   Comments: 2

Given A= sin^2 θ + cos^4 θ, then for all real θ

$$\mathrm{Given}\:{A}=\:\mathrm{sin}^{\mathrm{2}} \theta\:+\:\mathrm{cos}^{\mathrm{4}} \theta,\:\mathrm{then}\:\mathrm{for}\:\mathrm{all} \\ $$$$\mathrm{real}\:\theta \\ $$

Question Number 45814    Answers: 0   Comments: 0

thank you sis

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sis} \\ $$

Question Number 45812    Answers: 0   Comments: 0

plz help me

$$\mathrm{plz}\:\mathrm{help}\:\mathrm{me} \\ $$

Question Number 45811    Answers: 1   Comments: 0

(18+5x)×3=309

$$\left(\mathrm{18}+\mathrm{5x}\right)×\mathrm{3}=\mathrm{309} \\ $$

Question Number 45836    Answers: 0   Comments: 3

∫(1/(sin^2 x))∙(1/((3+2cosx)))dx=?

$$\int\frac{\mathrm{1}}{{sin}^{\mathrm{2}} {x}}\centerdot\frac{\mathrm{1}}{\left(\mathrm{3}+\mathrm{2}{cosx}\right)}{dx}=? \\ $$

Question Number 45809    Answers: 2   Comments: 2

Question Number 45827    Answers: 1   Comments: 1

Question Number 45802    Answers: 0   Comments: 1

some practice for the brave... ∫((cos^2 x sin^2 x)/(cos x +sin x))dx=? ∫((cos^2 x tan^2 x)/(cos x +tan x))dx=? ∫((sin^2 x tan^2 x)/(sin x +tan x))dx=?

$$\mathrm{some}\:\mathrm{practice}\:\mathrm{for}\:\mathrm{the}\:\mathrm{brave}... \\ $$$$\int\frac{\mathrm{cos}^{\mathrm{2}} \:{x}\:\mathrm{sin}^{\mathrm{2}} \:{x}}{\mathrm{cos}\:{x}\:+\mathrm{sin}\:{x}}{dx}=? \\ $$$$\int\frac{\mathrm{cos}^{\mathrm{2}} \:{x}\:\mathrm{tan}^{\mathrm{2}} \:{x}}{\mathrm{cos}\:{x}\:+\mathrm{tan}\:{x}}{dx}=? \\ $$$$\int\frac{\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{tan}^{\mathrm{2}} \:{x}}{\mathrm{sin}\:{x}\:+\mathrm{tan}\:{x}}{dx}=? \\ $$

Question Number 45795    Answers: 1   Comments: 0

find ∫ (dx/(cosx sin^2 x))

$${find}\:\int\:\frac{{dx}}{{cosx}\:{sin}^{\mathrm{2}} {x}} \\ $$

Question Number 45794    Answers: 1   Comments: 0

Question Number 45792    Answers: 2   Comments: 3

let u_n =Σ_(k=1) ^n (((−1)^([k]) )/k) and H_n =Σ_(k=1) ^n (1/k) 1)calculate u_n interms of H_n 2)study the convergence of (u_n ) 3)study theconvergence of Σ u_(n.)

$${let}\:{u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{\left[{k}\right]} }{{k}}\:\:{and}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$$$\left.\mathrm{1}\right){calculate}\:{u}_{{n}} \:{interms}\:{of}\:{H}_{{n}} \\ $$$$\left.\mathrm{2}\right){study}\:{the}\:{convergence}\:{of}\:\left({u}_{{n}} \right) \\ $$$$\left.\mathrm{3}\right){study}\:{theconvergence}\:{of}\:\Sigma\:{u}_{{n}.} \\ $$$$ \\ $$

Question Number 45804    Answers: 0   Comments: 0

Question Number 45806    Answers: 0   Comments: 0

Question Number 45781    Answers: 1   Comments: 0

Plz solve log (17.92)^(−(1/9))

$$\:\:\:{Plz}\:{solve} \\ $$$$\:\:\:\:\boldsymbol{{log}}\:\left(\mathrm{17}.\mathrm{92}\right)^{−\frac{\mathrm{1}}{\mathrm{9}}} \\ $$

Question Number 45776    Answers: 1   Comments: 1

y=∣f(x)∣ y′−?

$$\boldsymbol{{y}}=\mid\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\mid \\ $$$$\boldsymbol{{y}}'−? \\ $$

Question Number 45777    Answers: 0   Comments: 1

2cos ((3π)/7)=((24+(√(3a)))/(72))where a=−27+4(√(147.4))

$$\mathrm{2cos}\:\frac{\mathrm{3}\pi}{\mathrm{7}}=\frac{\mathrm{24}+\sqrt{\mathrm{3}{a}}}{\mathrm{72}}{where}\:{a}=−\mathrm{27}+\mathrm{4}\sqrt{\mathrm{147}.\mathrm{4}} \\ $$

  Pg 1560      Pg 1561      Pg 1562      Pg 1563      Pg 1564      Pg 1565      Pg 1566      Pg 1567      Pg 1568      Pg 1569   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com