Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1564

Question Number 45976    Answers: 0   Comments: 1

find u_n = ∫_0 ^∞ e^(−n[x]) cos(nx)dx and v_n =∫_0 ^∞ e^(n[x]) sin(nx)dx 2) find nature of Σ u_n v_n and Σ (u_n /v_n )

$${find}\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{n}\left[{x}\right]} {cos}\left({nx}\right){dx}\:{and}\:{v}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{e}^{{n}\left[{x}\right]} {sin}\left({nx}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:\Sigma\:{u}_{{n}} {v}_{{n}} \:\:{and}\:\Sigma\:\frac{{u}_{{n}} }{{v}_{{n}} } \\ $$

Question Number 45975    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctan(1+t^2 ))/(1+t^2 ))dt

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$

Question Number 45974    Answers: 0   Comments: 0

calculate A_n =∫_0 ^n e^(−n[x]) sin (2x)dx 2)study the cnvergence of Σ A_n

$${calculate}\:\:{A}_{{n}} =\int_{\mathrm{0}} ^{{n}} \:\:\:{e}^{−{n}\left[{x}\right]} \:{sin}\:\left(\mathrm{2}{x}\right){dx} \\ $$$$\left.\mathrm{2}\right){study}\:{the}\:{cnvergence}\:{of}\:\Sigma\:{A}_{{n}} \\ $$

Question Number 45973    Answers: 0   Comments: 0

find ∫ sh(x)ln(x+(√(1+x^2 )))dx

$${find}\:\int\:\:{sh}\left({x}\right){ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right){dx} \\ $$

Question Number 45972    Answers: 0   Comments: 0

find ∫ ch(x)ln(x+(√(x^2 −1)))dx

$${find}\:\:\int\:\:{ch}\left({x}\right){ln}\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right){dx} \\ $$

Question Number 45971    Answers: 0   Comments: 0

calculate f(x)=∫_0 ^1 ((arctan(xt))/(1+x^2 t^2 ))dt

$${calculate}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{arctan}\left({xt}\right)}{\mathrm{1}+{x}^{\mathrm{2}} {t}^{\mathrm{2}} }{dt} \\ $$

Question Number 45970    Answers: 1   Comments: 1

find ∫ ((arcsin(2x))/(√(1−4x^2 )))dx

$${find}\:\int\:\:\frac{{arcsin}\left(\mathrm{2}{x}\right)}{\sqrt{\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 45968    Answers: 1   Comments: 2

1)find Σ_(n=1) ^∞ ((cos(nx))/n) and Σ_(n=1) ^∞ ((sin(nx))/n) 2) calculate Σ_(n=1) ^∞ (1/n)cos(((2nπ)/3)) and Σ_(n=1) ^∞ (1/n)sin(((2nπ)/3))

$$\left.\mathrm{1}\right){find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{cos}\left({nx}\right)}{{n}}\:{and}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{sin}\left({nx}\right)}{{n}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}{cos}\left(\frac{\mathrm{2}{n}\pi}{\mathrm{3}}\right)\:{and}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}{sin}\left(\frac{\mathrm{2}{n}\pi}{\mathrm{3}}\right) \\ $$

Question Number 45969    Answers: 0   Comments: 0

1) find f(x)=∫_0 ^1 ln(1+ix)dx 2) calculate f^′ (x)

$$\left.\mathrm{1}\right)\:{find}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{ix}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({x}\right) \\ $$

Question Number 45961    Answers: 0   Comments: 0

let f_n (x)=(−1)^n ln(1+(x^2 /(n(1+x^2 )))) and f(x)=Σ f_n (x) find lim_(x→+∞) f(x).

$${let}\:{f}_{{n}} \left({x}\right)=\left(−\mathrm{1}\right)^{{n}} \:{ln}\left(\mathrm{1}+\frac{{x}^{\mathrm{2}} }{{n}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\right)\:{and}\:{f}\left({x}\right)=\Sigma\:{f}_{{n}} \left({x}\right) \\ $$$${find}\:{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right). \\ $$

Question Number 45960    Answers: 1   Comments: 0

find f(x)=Σ_(n=1) ^∞ ((x^n sin(nx))/n)

$${find}\:{f}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{x}^{{n}} {sin}\left({nx}\right)}{{n}} \\ $$

Question Number 45957    Answers: 1   Comments: 1

let u_n =Σ_(k=1) ^n (1/(k!(n−k)!)) calculate Σ_(n=1) ^∞ u_n

$${let}\:{u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}!\left({n}−{k}\right)!}\:\:{calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} {u}_{{n}} \\ $$

Question Number 45962    Answers: 0   Comments: 0

study the convervence of Σ_(n=1) ^∞ (((√(n+1))−(√n))/(nln(n+1)))

$${study}\:{the}\:{convervence}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\sqrt{{n}+\mathrm{1}}−\sqrt{{n}}}{{nln}\left({n}+\mathrm{1}\right)} \\ $$

Question Number 45963    Answers: 1   Comments: 1

find the value of Σ_(n=1) ^∞ (n/((4n^2 −1)^2 )) .

$${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{n}}{\left(\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }\:. \\ $$

Question Number 45941    Answers: 1   Comments: 0

Find 0<θ<2π with x,y ∈R x∙sinθ=y∙cosθ

$$\mathrm{Find}\:\mathrm{0}<\theta<\mathrm{2}\pi\:\mathrm{with}\:{x},{y}\:\in\mathbb{R} \\ $$$$ \\ $$$${x}\centerdot{sin}\theta={y}\centerdot{cos}\theta \\ $$

Question Number 45936    Answers: 0   Comments: 1

Question Number 45932    Answers: 1   Comments: 4

Show that: ((1.2^2 + 2.3^2 + ... + n(n + 1)^2 )/(1^2 .2 + 2^2 .3 + ... + n^2 (n + 1))) = ((3n + 5)/(3n + 1))

$$\mathrm{Show}\:\mathrm{that}:\:\:\:\:\frac{\mathrm{1}.\mathrm{2}^{\mathrm{2}} \:+\:\mathrm{2}.\mathrm{3}^{\mathrm{2}} \:+\:...\:+\:\mathrm{n}\left(\mathrm{n}\:+\:\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{1}^{\mathrm{2}} .\mathrm{2}\:+\:\mathrm{2}^{\mathrm{2}} .\mathrm{3}\:+\:...\:+\:\mathrm{n}^{\mathrm{2}} \left(\mathrm{n}\:+\:\mathrm{1}\right)}\:\:=\:\:\frac{\mathrm{3n}\:+\:\mathrm{5}}{\mathrm{3n}\:+\:\mathrm{1}} \\ $$

Question Number 45931    Answers: 0   Comments: 0

Question Number 45930    Answers: 1   Comments: 0

Question Number 45920    Answers: 1   Comments: 0

Question Number 45916    Answers: 1   Comments: 0

∫f(x)dx=f(×)+c

$$\int{f}\left({x}\right){dx}={f}\left(×\right)+{c} \\ $$

Question Number 45901    Answers: 0   Comments: 1

Question Number 45898    Answers: 1   Comments: 1

Question Number 45907    Answers: 1   Comments: 3

7×(6+x)−10=60 plz help me

$$\mathrm{7}×\left(\mathrm{6}+\mathrm{x}\right)−\mathrm{10}=\mathrm{60}\:\:\:\:\:\mathrm{plz}\:\mathrm{help}\:\mathrm{me} \\ $$

Question Number 45905    Answers: 2   Comments: 0

Question Number 45896    Answers: 2   Comments: 2

solve for x x^4 −4x+1=0

$$\boldsymbol{{solve}}\:\boldsymbol{{for}}\:\boldsymbol{{x}} \\ $$$$\boldsymbol{{x}}^{\mathrm{4}} −\mathrm{4}\boldsymbol{{x}}+\mathrm{1}=\mathrm{0} \\ $$

  Pg 1559      Pg 1560      Pg 1561      Pg 1562      Pg 1563      Pg 1564      Pg 1565      Pg 1566      Pg 1567      Pg 1568   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com