Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1564
Question Number 53688 Answers: 2 Comments: 1
$${i}^{{i}\:} \:?? \\ $$$${Whis}\:{is}\:{it},,\:{plz}\:{explain}\:{it} \\ $$$${i}=\sqrt{−\mathrm{1}} \\ $$
Question Number 53686 Answers: 0 Comments: 5
Question Number 53684 Answers: 1 Comments: 4
Question Number 53676 Answers: 0 Comments: 5
$${If}\:\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\:+\sqrt{{y}^{\mathrm{2}} −\mathrm{1}}\:=\frac{\mathrm{1}}{\mathrm{2}}\left({x}+{y}\right) \\ $$$${show}\:{that} \\ $$$$\frac{{dy}}{{dx}}+\sqrt{\frac{{y}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{1}}}\:=\mathrm{0} \\ $$$$ \\ $$
Question Number 53675 Answers: 2 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:\mathrm{1}+\mathrm{log}_{\mathrm{3}} \mathrm{x}\:=\mathrm{log}_{\mathrm{27}} \mathrm{y},\:\mathrm{express}\:\mathrm{y} \\ $$$$\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{x}. \\ $$
Question Number 53727 Answers: 2 Comments: 0
Question Number 53664 Answers: 1 Comments: 1
Question Number 53647 Answers: 1 Comments: 2
$$\underset{\boldsymbol{\phi}\rightarrow\infty} {\mathrm{lim}}\:\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\phi}\right)^{\phi} \:\:=\:\:\mathrm{e} \\ $$
Question Number 53630 Answers: 1 Comments: 0
Question Number 53624 Answers: 0 Comments: 0
$${find}\:\int_{−\infty} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} } \sqrt{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 53623 Answers: 1 Comments: 3
$$\left.\mathrm{1}\right)\:{study}\:{the}\:{function} \\ $$$${f}\left({x}\right)={ln}\left({x}+\mathrm{1}−\sqrt{{x}}\right) \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{f}^{−\mathrm{1}} \left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{cslculate}\:\:\int\:{f}\left({x}\right){dx}\:{snd} \\ $$$$\int\:{f}^{−\mathrm{1}} \left({x}\right){dx} \\ $$$$\left.\mathrm{4}\right)\:{dtermine}\:\int\:{f}^{−\mathrm{1}} \left({x}^{\mathrm{2}} \:+{f}\left({x}\right)\right){dx} \\ $$$$ \\ $$
Question Number 53621 Answers: 0 Comments: 0
$$\mathrm{How}\:\mathrm{many}\:\mathrm{group}\:\mathrm{homomorphism}\:\mathrm{exist} \\ $$$$\mathrm{from}\:\mathrm{A}_{\mathrm{4}\:} \:\mathrm{to}\:\mathbb{Z}_{\mathrm{2}} ×\mathbb{Z}_{\mathrm{2}} \:\:? \\ $$
Question Number 53620 Answers: 1 Comments: 4
$$\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\:\:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}+\mathrm{1}}\:=? \\ $$$$ \\ $$$$\mathrm{1}.\:\frac{\pi}{\mathrm{4}}\:\:\:\:\:\:\:\:\mathrm{2}.\:\frac{\pi^{\mathrm{2}} }{\mathrm{12}}\:\:\:\:\:\mathrm{3}.\:\frac{\pi}{\mathrm{8}}\:\:\:\:\:\mathrm{4}.\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$
Question Number 53619 Answers: 0 Comments: 0
$$\mathrm{If}\:\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{cosnsin}\left(\mathrm{na}\right)}{\mathrm{n}}\:\mathrm{is}\:\mathrm{converge}\:\mathrm{then}\:\mathrm{a}\:\mathrm{is}? \\ $$$$\mathrm{1}.\:\mathrm{a}\in\mathbb{Z} \\ $$$$\mathrm{2}.\:\mathrm{a}\in\left\{\mathrm{k}\pi:\mathrm{k}\in\mathbb{Z}\right\} \\ $$$$\mathrm{3}.\:\mathrm{a}\in\mathbb{R}−\left\{\frac{\mathrm{2k}+\mathrm{1}}{\mathrm{2}}\pi:\mathrm{k}\in\mathbb{Z}\right\} \\ $$$$\mathrm{4}.\:\mathrm{a}\in\mathbb{R} \\ $$$$ \\ $$
Question Number 53601 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−{x}^{\mathrm{2}} } −{e}^{−{x}} }{{x}}\:{dx}\:. \\ $$
Question Number 53600 Answers: 0 Comments: 1
$${calculate}\:{A}_{{m}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{sin}\left({mx}\right)}{{e}^{\mathrm{2}\pi{x}} −\mathrm{1}}\:{dx}\:\:{with}\:{m}>\mathrm{0} \\ $$
Question Number 53599 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{{n}−\mathrm{1}} }{{e}^{{x}} \:+\mathrm{1}}\:{dx}\:\:\:{with}\:{n}\:{integr}\:{natural}\:\:\left({n}\geqslant\mathrm{2}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}}{{e}^{{x}} \:+\mathrm{1}}{dx} \\ $$
Question Number 53618 Answers: 1 Comments: 3
$$\mathrm{Let}\:\mathrm{x},\mathrm{y}\in\mathbb{Z} \\ $$$$\mathrm{if}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:\mathrm{divide}\:\mathrm{xy}+\mathrm{1}\:\mathrm{then}\:\mathrm{prove} \\ $$$$\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }{\mathrm{xy}+\mathrm{1}}\:\mathrm{is}\:\mathrm{square}\:\mathrm{of}\:\mathrm{integer}\:\mathrm{number} \\ $$
Question Number 53595 Answers: 1 Comments: 5
Question Number 53593 Answers: 2 Comments: 1
Question Number 53570 Answers: 1 Comments: 7
Question Number 53556 Answers: 2 Comments: 1
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:{k}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the} \\ $$$$\mathrm{system}\:\mathrm{of}\:\mathrm{linear}\:\mathrm{equations}\:\:{kx}+\mathrm{2}{y}=\mathrm{5}\: \\ $$$$\mathrm{and}\:\:\:\mathrm{3}{x}+{y}=\mathrm{1}\:\mathrm{has}\:\mathrm{zero}\:\mathrm{solutions}. \\ $$
Question Number 53550 Answers: 1 Comments: 2
Question Number 53532 Answers: 1 Comments: 1
$$\mathrm{The}\:\mathrm{derivative}\:\mathrm{of}\:{F}\:\left({x}\right)=\underset{{x}^{\mathrm{2}} } {\overset{{x}^{\mathrm{3}} } {\int}}\:\frac{\mathrm{1}}{\mathrm{log}\:{t}}\:{dt} \\ $$$$\left({x}\:>\mathrm{0}\right)\:\mathrm{is} \\ $$
Question Number 53528 Answers: 0 Comments: 0
$${x}^{\mathrm{3}} \:+\:{y}^{\mathrm{3}} \:+\:{z}^{\mathrm{3}} \:\:=\:\:{x}\:+\:{y}\:+\:{z} \\ $$$${x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} \:\:=\:\:{xyz} \\ $$$${x},\:{y},\:{z}\:\:\in\:\mathbb{R}^{+} \\ $$$${How}\:\:{many}\:\:{triple}\:\:{of}\:\:\left({x},\:{y},\:{z}\right)\:\:? \\ $$
Question Number 53530 Answers: 2 Comments: 1
Pg 1559 Pg 1560 Pg 1561 Pg 1562 Pg 1563 Pg 1564 Pg 1565 Pg 1566 Pg 1567 Pg 1568
Terms of Service
Privacy Policy
Contact: info@tinkutara.com