Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1563

Question Number 53048    Answers: 0   Comments: 1

Question Number 53043    Answers: 2   Comments: 1

Question Number 53034    Answers: 2   Comments: 0

Angle between the lines ((x−1)/1)=((y−1)/1)=((z−1)/2)and ((x−1)/(−(√(3−1))))=((y−1)/(√(3−1)))=((z−1)/4) is

$$\mathrm{Angle}\:\mathrm{between}\:\mathrm{the}\:\mathrm{lines}\:\frac{\mathrm{x}−\mathrm{1}}{\mathrm{1}}=\frac{\mathrm{y}−\mathrm{1}}{\mathrm{1}}=\frac{\mathrm{z}−\mathrm{1}}{\mathrm{2}}\mathrm{and}\:\frac{\mathrm{x}−\mathrm{1}}{−\sqrt{\mathrm{3}−\mathrm{1}}}=\frac{\mathrm{y}−\mathrm{1}}{\sqrt{\mathrm{3}−\mathrm{1}}}=\frac{\mathrm{z}−\mathrm{1}}{\mathrm{4}}\:\mathrm{is} \\ $$

Question Number 53033    Answers: 0   Comments: 0

in the law of mean the value of θ satisfies the condition

$$\mathrm{in}\:\mathrm{the}\:\mathrm{law}\:\mathrm{of}\:\mathrm{mean}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\theta\:\mathrm{satisfies}\:\mathrm{the}\:\mathrm{condition}\: \\ $$

Question Number 53031    Answers: 1   Comments: 1

Question Number 53025    Answers: 1   Comments: 1

Question Number 53007    Answers: 0   Comments: 0

2^x ×3−y^2 =−1

$$\mathrm{2}^{\mathrm{x}} ×\mathrm{3}−\mathrm{y}^{\mathrm{2}} =−\mathrm{1} \\ $$

Question Number 52999    Answers: 0   Comments: 6

∫_0 ^( ∞) ((x ln^2 (x))/(e^x − 1)) dx

$$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{ln}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{x}}\right)}{\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{1}}\:\:\boldsymbol{\mathrm{dx}}\:\:\: \\ $$

Question Number 52993    Answers: 0   Comments: 2

Question Number 52992    Answers: 3   Comments: 1

Question Number 52991    Answers: 1   Comments: 1

Question Number 52988    Answers: 1   Comments: 0

∫ (x^2 /(√(1 + x^4 ))) dx

$$\int\:\frac{{x}^{\mathrm{2}} }{\sqrt{\mathrm{1}\:+\:{x}^{\mathrm{4}} }}\:{dx} \\ $$

Question Number 52960    Answers: 1   Comments: 0

A wholesaler buys an article at“ $32 less 12.5%”. she then sells the article at a gain of 25% of her cost after allowing a 20% discount on her marked price. what is the marked price. please sir help me thanks

$${A}\:{wholesaler}\:{buys}\:{an}\:{article}\:{at}``\:\$\mathrm{32}\: \\ $$$${less}\:\mathrm{12}.\mathrm{5\%}''.\:{she}\:{then}\:{sells}\:{the}\:{article} \\ $$$${at}\:{a}\:{gain}\:{of}\:\mathrm{25\%}\:{of}\:{her}\:{cost}\:{after}\: \\ $$$${allowing}\:{a}\:\:\mathrm{20\%}\:{discount}\:{on}\:{her}\: \\ $$$${marked}\:{price}.\:{what}\:{is}\:{the}\:{marked}\: \\ $$$${price}. \\ $$$${please}\:{sir}\:{help}\:{me}\:{thanks} \\ $$

Question Number 52953    Answers: 1   Comments: 0

Can you pls help me with that but only by using the derivative of f(1) and not using the defined defivative of f(x) itself ? Thanks f(x) = x^2 − x f ′ (1) = ?

$$ \\ $$$$\mathrm{Can}\:\mathrm{you}\:\mathrm{pls}\:\mathrm{help}\:\mathrm{me}\:\mathrm{with}\:\mathrm{that}\:\mathrm{but}\:\mathrm{only} \\ $$$$\mathrm{by}\:\mathrm{using}\:\mathrm{the}\:\mathrm{derivative}\:\mathrm{of}\:{f}\left(\mathrm{1}\right)\:\mathrm{and}\:\boldsymbol{\mathrm{not}} \\ $$$$\mathrm{using}\:\mathrm{the}\:\mathrm{defined}\:\mathrm{defivative}\:\mathrm{of}\:{f}\left({x}\right)\:\mathrm{itself}\:? \\ $$$$ \\ $$$$\mathrm{Thanks} \\ $$$$ \\ $$$${f}\left({x}\right)\:=\:{x}^{\mathrm{2}} \:−\:{x} \\ $$$$ \\ $$$${f}\:'\:\left(\mathrm{1}\right)\:=\:? \\ $$

Question Number 52950    Answers: 1   Comments: 1

∫_( 0) ^(π/4) ((sin x+cos x)/(3+sin 2x)) dx =

$$\:\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{4}} {\int}}\:\frac{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}{\mathrm{3}+\mathrm{sin}\:\mathrm{2}{x}}\:{dx}\:= \\ $$

Question Number 52949    Answers: 0   Comments: 4

If f(x) is an odd function, then ∫_( 0) ^π f (cos x) dx = 2∫_( 0) ^(π/2) f (cos x) dx

$$\mathrm{If}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{an}\:\mathrm{odd}\:\mathrm{function},\:\mathrm{then} \\ $$$$\underset{\:\mathrm{0}} {\overset{\pi} {\int}}\:{f}\:\left(\mathrm{cos}\:{x}\right)\:{dx}\:=\:\mathrm{2}\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:{f}\:\left(\mathrm{cos}\:{x}\right)\:{dx} \\ $$

Question Number 52948    Answers: 2   Comments: 1

If f(x) =∫_( 1) ^x ((log t)/(1+t)) dt, then f(x)+f ((1/x) )=(1/2)(log x)^2

$$\mathrm{If}\:\:\:{f}\left({x}\right)\:=\underset{\:\mathrm{1}} {\overset{{x}} {\int}}\:\frac{\mathrm{log}\:{t}}{\mathrm{1}+{t}}\:{dt},\:\mathrm{then} \\ $$$$\:{f}\left({x}\right)+{f}\:\left(\frac{\mathrm{1}}{{x}}\:\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{log}\:{x}\right)^{\mathrm{2}} \\ $$

Question Number 52947    Answers: 1   Comments: 0

∫_( 0) ^π ((x tan x)/(sec x+cos x)) dx =

$$\underset{\:\mathrm{0}} {\overset{\pi} {\int}}\:\:\frac{{x}\:\mathrm{tan}\:{x}}{\mathrm{sec}\:{x}+\mathrm{cos}\:{x}}\:{dx}\:= \\ $$

Question Number 52944    Answers: 1   Comments: 0

∫_( 0) ^( 1) ((x^3 − 1)/((1 + x^2 ) ln x)) dx

$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\:\frac{\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:−\:\mathrm{1}}{\left(\mathrm{1}\:+\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \right)\:\boldsymbol{\mathrm{ln}}\:\boldsymbol{\mathrm{x}}}\:\:\boldsymbol{\mathrm{dx}} \\ $$

Question Number 52938    Answers: 0   Comments: 3

Question Number 52936    Answers: 0   Comments: 1

Question Number 52946    Answers: 1   Comments: 1

∫_( 0) ^(π/2) log sin 2x dx =

$$\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\:\mathrm{log}\:\mathrm{sin}\:\mathrm{2}{x}\:{dx}\:= \\ $$

Question Number 52945    Answers: 3   Comments: 2

Question Number 52911    Answers: 2   Comments: 2

Question Number 52898    Answers: 1   Comments: 0

∫arcsin x arccos x dx=?

$$\int\mathrm{arcsin}\:{x}\:\mathrm{arccos}\:{x}\:{dx}=? \\ $$

Question Number 52900    Answers: 3   Comments: 0

∫_0 ^(π/2) sin x (√(sin 2x)) dx=? ∫_(−(π/4)) ^(π/4) cos x (√(cos 2x)) dx=?

$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mathrm{sin}\:{x}\:\sqrt{\mathrm{sin}\:\mathrm{2}{x}}\:{dx}=? \\ $$$$\underset{−\frac{\pi}{\mathrm{4}}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\mathrm{cos}\:{x}\:\sqrt{\mathrm{cos}\:\mathrm{2}{x}}\:{dx}=? \\ $$

  Pg 1558      Pg 1559      Pg 1560      Pg 1561      Pg 1562      Pg 1563      Pg 1564      Pg 1565      Pg 1566      Pg 1567   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com